Journal:Informatica
Volume 14, Issue 4 (2003), pp. 497–514
Abstract
The quadratic assignment problem (QAP) is one of the well‐known combinatorial optimization problems and is known for its various applications. In this paper, we propose a modified simulated annealing algorithm for the QAP – M‐SA‐QAP. The novelty of the proposed algorithm is an advanced formula of calculation of the initial and final temperatures, as well as an original cooling schedule with oscillation, i.e., periodical decreasing and increasing of the temperature. In addition, in order to improve the results obtained, the simulated annealing algorithm is combined with a tabu search approach based algorithm. We tested our algorithm on a number of instances from the library of the QAP instances – QAPLIB. The results obtained from the experiments show that the proposed algorithm appears to be superior to earlier versions of the simulated annealing for the QAP. The power of M‐SA‐QAP is also corroborated by the fact that the new best known solution was found for the one of the largest QAP instances – THO150.
Journal:Informatica
Volume 8, Issue 4 (1997), pp. 465–476
Abstract
The problem of parameter clustering on the basis of their correlation matrix is considered. The convergence in probability of parameter clustering based on the simulated annealing is investigated theoretically.
Journal:Informatica
Volume 8, Issue 3 (1997), pp. 425–430
Abstract
In this paper we are concerned with global optimization, which can be defined as the problem of finding points on a bounded subset of Rm, in which some real-valued function f(x) assumes its optimal value. We consider here a global optimization algorithm. We present a stochastic approach, which is based on the simulated annealing algorithm. The optimization function f(x) here is discrete and with noise.
Journal:Informatica
Volume 6, Issue 3 (1995), pp. 249–263
Abstract
A multiextremal problem on the synthesis of external circuit of a tunable subnanosecond pulse TRAPATT-generator was investigated using algorithms of local optimization and cluster analysis.
Journal:Informatica
Volume 1, Issue 1 (1990), pp. 20–39
Abstract
In this paper we deal with the problem of extremal parameter grouping. The problem formulation, the algorithms of parameter grouping and the fields of implementation are presented. The deterministic algorithms of extremal parameter grouping often find the local maximum of the functional, characterizing the quality of a partition. The problem has been formulated as a problem of combinatorial optimization and attempted to be solved using the simulated annealing strategy. The algorithms, realizing such a strategy and devoted to the solving of the problem concerned, are proposed and investigated.