Numerical Simulation of Dynamic Synapse-Dendrite-Soma Neuronal Processes
Volume 9, Issue 2 (1998), pp. 141–160
Pub. online: 1 January 1998
Type: Research Article
Received
1 June 1997
1 June 1997
Published
1 January 1998
1 January 1998
Abstract
The nonlinearities play a crucial role in the brain processes. They take place in neuronal system elements: synapses, dendrite membranes, soma of neurons, axons. It is established that the soma nonlinearity, which is of sigmoidal shape, is not so strong as compared with the electric current-voltage relation of a dendrite membrane. The relation is N-shaped with two stable and one unstable points. In dynamics, this leads to the appearance of a switch wave or formation of some logic functions. We present some artificial logic circuits based on an electrical analogy of dendritic membrane characteristics in static and dynamic cases. The nonlinear cable theory and the numerical simulation were used. Basing on the logic circuit construction proposed, we suppose that the dendritic membrane processes are able not only to gather and transfer information but also to transform and classify knowledge.
The theoretical substantiation and numerical experiments are only the first step forward to the proving of neuronal dendritic logic constructions. Of course, extensive neurophysiological tests are necessary to discover the final mechanism of neuronal computing in the human brain.