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Abstract. The nonlinearities play a crucial role in the brain processes. They take place in neuronal 
system elements: synapses, dendrite membranes, soma of neurons, axons. It is established that the 
soma nonlinearity, which is of sigmoidal shape, is not so strong as compared with the electric 
current-voltage relation of a dendrite membrane. The relation is N-shaped with two stable and 
one unstable points. In dynamics, this leads to the appearance of a switch wave or formation of 
some logic functions. We present some artificial logic circuits based on an electrical analogy of 
dendritic membrane characteristics in static and dynamic cases. The nonlinear cable theory and the 
numerical simulation were used. Basing on the logic circuit construction proposed, we suppose that 
the dendritic membrane processes are able not only to gather and transfer information but also to 
transform and classify knowledge. 

The theoretical substantiation and numerical experiments are only the first step forward to the 
proving of neuronal dendritic logic constructions. Of course, extensive neurophysiological tests are 
necessary to discover the final mechanism of neuronal computing in the human brain. 

Key words: neuronal computing, dendritic logic circuit, nonIinearity, cable theory. 

1. Introduction 

It is well known that the chief function of dendrites in a common neurophysiological 
chain of synapse-dendrite-soma of a complex neuron is information-gathering. Numerous 
investigators have used the cable theory for explanation of neuronal dendrites. Some im­
portant works in this field have been conducted by Hodgkin and Huxley (1939); Hodgkin 
and Katz (1949); Rall (1962; 1964; 1967; 1978; 1989); Jack and Redman (1971); Jack et 
al., (1975); RaIl and Shepherd (1968); Rinzel and RaIl (1974); Koch et al. (1983); RaIl 
and Segev (1987). They considered many different extra complex operations; transferring 
of information, adaptation to a long-lasting current stimulus, coding information by vary­
ing frequencies, repetitive activity in excitable membranes, and transformation signals. 

Some theoretical and practical works (Jack et al., 1975; RaIl, 1960; Lux and Schu­
bert, 1975; Llinas and Sugimory, 1980; Schwindt and Crill, 1977; Lux et aI., 1970; Gut­
man, 1984; Garliauskas et al., 1991, 1992a, 1992b; Garliauskas, 1994) have proved that 
a current-voltage relation of a dendrite membrane is not only nonlinear, but also has the 
N-shaped form with two stable points. The first point occurs at the rest potential state 
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passing to the hyperpolarization area and the second - in the depolarization area. Special 
conditions of dendrite threshold action are created by a jump-like transit of a dendrite 
membrane potential from one stable point to the other. Based upon a conditional mathe­
maticallogic has been applied to the case of a simple dendritic branch in a narrow zone 
of stability (Garliauskas et al., 1991; J992a; 1992b). Below we will provide the mathe­
matical and num~rical treatments of these ideas. 

The general mathematical model of neuron activity relying on ideas above fuzzy logic 
were presented by Gupta (1989, 1992). Some ideas of a neuronal approach are presented 
by Garliauskas (1994). The origin of the fuzzy signals lies in complex biochemical and 
electrical processes of the synapse and the dendrite membrane that can be classified intQ 
two groups: the first group is associated with the impact of mediators when transferring 
the potassium, sodium, and chlorine ions in the synapse and the dendrite membrane in 
the cases of excitation, inhibition, and silent inhibition; the second group is connected 
with a nonlinear or bistable mathematical representation of electrical processes causing 
the formation of higher order fuzzy sets. 

To explain the functional possibilities of the dendrite, the concrete question has arisen. 
Does a dendrite fulfill similar operations as the soma: summation, aggregation, logic 
transform, and classification? If so, what are the somatic operations for? If not, why 
do such complex nonlinear characteristics of the dendrite exist? We try to answer the 
second question using knowledge of neurophysiology, nonlinear cable theory of neuronal 
dendrite by analogy with a simplified neuronal logic and classification functions. 

It needs .to emphasize that neuronal soma performs complex work on a molecular 
level. Brown's machine for replication of DNA and Conrad's enzymatic neuron (Conrad, 
1985) model this complexity. The natural neuron has some stable states which trans­
form very easily, can change the molecular structure, and has .a key-lock like features 
for recognition of enzymatic molecular components in the environment. The number of 
existing problems in the soma tells us about its supercomplexity. 

Thus, we will try to generalize a consideration of the biological neuronal morphology 
particularly to the dendrite in a complex neuron. 

·2. Nonlinear Dendritic Membrane Functions and their Mathematical Description 

2.1. NOJllinearities in Synapse-Dendrite-Soma Chain 

It is important to emphasize a nonlinearity among many phenomena of brain function. 
We consider it in the chain of synapse-dendrite-soma. As a rule, in most issues of neu­
rocomputing science, a linear relation between the current and a change of potential in a 
postsynaptic receptor (Ohm's law) has been used. However, novel studies have confirmed 
that the current~voltage relation of a synaptic receptor is nonlinear. This occurs when at 
least three different glutaminate receptors were distinguished, especially N-methyl-D­
aspirate (NMDA) (Foster and Fagg, 1984; Mayer and Westbrook, 1984). The current­
voltage relation of the .synaptic receptor on NMDA has the region where the slope is of 
negative conductance (Fig. I). 
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Fig. 1. The current-voltage relation of the synaptic receptor of NMDA. 

Action of the NMDA receptor on both the transmitter and postsynaptic potential 
makes the receptor to behave as an AND logic element (Koch, 1990). Only a simulta­
neous presence of presynaptic action on the NMDA receptor and depolarizing synaptic 
potential provides the excited postsynaptic potential. 

We are more interested in the electrical properties of dendritic membrane behaviour. 
Koike et al. (1968) suggested that there exists a maximum of the steady input current­
voltage relation curve; this curve has slopes of positive and negative conductance aris­
ing from the supposed e}Cistence of the N-shaped current-voltage relation. Measuring 
the steady input relation cat ,),-motoneurons by the current clamp method, Lux et al. 
(1970); Lux and Schubert (1975) have observed the current-voltage relation up to the 
forecasted maximum. Schwindt and erill (1977) repeated analogous measurements and 
eventually observed N-shaped current-voltage relations of two types (Fig. 2): the type 
(a) with net inward current inversion, and type (b) without current inversion, both are 
containing a negative slope. The N-shaped current-voltage relation curve (Fig. 3) crosses 
the abscissa V three times in the points Vr, Vu, and Vd where Vr is a rest potential, 
Vu is a potential where a slope conductance is negative, and Vd is a depolarized poten­
tial. Lux and Schubert (1975) have also established that the slow inward current me­
diatedby ca1ciumions is the reason for a existance of stable depolarization in cat ')' 
-motoneurons. 

This was confirmed experimentally by Llinas and Sigumori (1980); they demonstrated 

directly that the existence of dendritic stable depolarization depends on the inward cal­
cium current. 
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I 

Fig. 2. N -shaped current-voltage relation of two types: one type (a) with inward current inversion. and the 
second (b) without current inversion. 

I 

Fig. 3. The current-voltage relation for sodium, potassium and net inward cum;nt. 

Further we will consider the nonlinear fundamental cable theory. Jack et al. (1975) 
analysed the N-shaped current-voltage relation for two currents (potassium and sodium) 
but nqt calcium. However, this is not a prerequisite for an artificial intelligence approach. 
Since our investigations are concentrated on dendritic membrane ,nonlinearities, we de­
scribe some details of the momentary current-voltage relation developed by Jack et al. 
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(1975). The net inward current is the sum of the sodium current as the inward current 

and the potassium current as the outward current (Fig. 3). The potassium current-voltage 
relation can be given by a straight line, as in a squid (Hodgkin and Katz, 1949). 

We describe th~ three points v;., V~, and Vd shown in Fig. 3 more in detail: 
1. The rest potential point Vr occurs where the current-voltage relation has a positive 

slope conductance. Slight deviations from this point increase the current whioh returns 
the membrane pote~tial to ,its initial value. Thus, the point of resting potential v;. is stable. 

2. The next intersection point is at Vu.' where the slop.e conductance is negative, and 
there is no equillibrium point between depolarizing and hyperpolarizing currents. This 
point is obviously unstable and leads to the 'appearance of the voltage threshold and a. 
relevant action potentiaL 

3. The right-hand intersection is at Vd' with~positive slope conductance. This point 
is stable and, thus, the membrane current':vol,tage relation has'two stable points v;. and 
Vd. However, Jack et al. (1975) showed that during potassium activation n and sodium 
inactivation h reactions, the current-voltage relation would spontaneously shift outward, 
the point Vd would disappear completely, and the membrane would repolarize back to v;.. 

The third member in the syrtapse-dendrite-soma chain is the soma of a neuron. Its, 
main characteristic is an input-output threshold function analogous to an amplifier with 
a saturating gain function. Examples of high-gain limit and other functions of the soma 
have been shown by Gupta and Rao (1994). 

Following our overview of the synapse-dendrite-soma chain, we now will concentrate 
our attention on a mathematical description and synthesis of stability in the dendrite using 
the nonlinear cable theory. 

2.2. Mathematical Description of Dendritic Membrane Functions and Minimum 
Threshold Value 

First, as shown by (Jack et al., 1975; Gutman, 1984; Segev et al., 1989; Garliauskas 
et al., 1991; Garliauskas, 1994), the current-voltage relation can be approximated by a 
third-order polynomial of the common form. Now we use such a polynomial: 

(1) 

where V is the membrane potential, a is the constant (a = 3) and b is a parameter (range 
is from 0.5 to 0.8). 

The approximation (1) of the current-voltage relation describes Hodgkin and Huxley­
like electrical characteristic of the membrane rather well. 

Second, the basic mathematical description of a dendrite as a cable is founded on 
partial differential equations of the linear or nonlinear cable theory. The main Hodgkin 
and Huxley (1939) differential equation is the following 

(2) 
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where ra is the intracellular resistance per unit length of the cable, Cm and rm are the 
capacitance al1d resistance of the membrane per unit length of the cable, respectively. 

After introdu«ing membrane time Tm and space>. constants, one obtains 

(3) 

where>. = (rm/ra)1/2 and Tm = rmCm. 
The membrane time constant is given by the time at which the voltage rises by ap­

proximately two-thirds of its steady-state value. The space constant of the membrane is 
a very important value for transferring excited signals through the dendritic line. Quanta­
tively, the membrane space constant is given by the length x = >. when the potential V in 
a steady-state decays up to e-1 of its initial value. This value, defined from the canonical 
electrotonic equation near.the rest potential, is named the electrotonic length constant. 
According to the Rall (1962) theory of ohmic dendritic cables, the spikes are not only 
in ·the soma of neurons .or in the initial axonal segment .but also along dendrites. This 
excited potential exists in dendrites at transduction as long as the electrotonic distance of 
a semi-infinite cable is not exceeded the electrotonic length constant>. three times. 

Partial differential Eqs. 2 and (3) are parabolic and have a unique solution, if we 
denote suitable initial data and certain boundary conditions at x = ° and x = l in finite 
cable case. 

The initial conditions are as follows 

V(x, 0) = V{x), ° ~ x ~ l, (4) 

or in a uniform resting state 

V{x) = 0, ° ~ x ~ l. (5) 

The boundary condition as a voltage clamp (some fixed value of potential) at x = ° is 

V{O, t) = Vc, t > 0, (6) 

or, if applied at x = l, is 

V{l, t) = Vc, t > 0, (7) 

where Vc is the voltage clamp equal to the depolarizing potential. 
Another boundary condition (x = 0) is a sealed end that means there is no longitudinal 

current at the end, then 

V - x(O, t) = 0, t > 0, (8) 

or if the end at x = l is sealed, 

Vx{l,t) = 0, t > 0. (9) 
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In Eqs. 2 and (3), initial and boundary conditions (4) and (5) in the linear cable theory 
Ta, r m , and Cm are independent on V, x, and t. However, the value rm in longer ranges 
of potentials is usually strongly dependent on V and t. Thus, instead of Eq. 2 , we must 
use: 

(10) 

where ii (V) is the membrane ionic current density related to the membrane area on a unit 
length of the cable versus potential. 

Substituting (1) to Eq. 10 with some new notation of parameters, a strongly non linear 
differential equation is as follows 

8V (/) 82V ( 2 3) Cm at = 1 ra 8x2 + V + pV + qV , (11) 

wherep = -(1- b2)-1, q = 1/a(1- b2 ). 

In view of the dendrite model as a homogeneous cable (Jack et al., 1975; Torre and 
Poggio, 1978) and taking into consideration the transmembrane current, we obtain such 
a dimensionless canonical partial differential equation: 

8V . 82V 
at = 8x2 + f(V). (12) 

Taking into account that in the bistable active medium a potassium current has been 
taken. 

It is important to investigate the stability points of equation (12) and possible transi­
tions from one stability point to the other, as well as the conditions for the appearance of 
switch waves. The switch wave moving in velocity c ~ 0 from the stability point Vo = ho 
to V2 '= h2 and vice verse is represented by a partial solution of equation (12). 

Including new variable 

~ = x - ct, V = V(~), (13) 

the such limiting conditions are existed: 

~ -+ -00, V -+ h2; ~ -+ +00, V -+ ho. (14) 

After substituting solution (13) into equation (12) we get an ordinary second order 
differential equation 

V" + cV' + f(V) = o. (15) 

Let us introduce a potential field function 

v 

I(v) = J f(V) dv, (16) 

o 
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Fig. 4. Ionic current and its integrals versus potential. 

and assume v as the coordinate of a particle and e as the time. In fact the dynamic might 
be interpreted as a particle moving in the potential field with veloCity c, i.e., with the front 
velocity of the switch wave. The value of function (16) achieves maxima at the points ho 
and h2 . 

If A = J:')2 f(V)dV > 0 (Fig. 4), then V(h2) > V(ho), and if A < 0, the particle 
jumps from ho to h2 at c = Co (critical value); if A < 0 and V(h2) < V(ho), the particle 
jumps from h2 to ho. 

It is evident that saddle points (ho, 0) and (h2, 0) are existing. The results of modelling 
of equation (15) for four variants of initial conditions are presented in Fig. 5. 

Further, we use the expression from the Cole theorem (Cole and Curtis, 1941) for 
nonterminated cables 

(17) 

where ia is an applied current density, and show some general properties relevant to 
voltage threshold conditions. 

We find the applied current I = 2ia. at x = 0 from a theoretical ii relation by inte-
grating to give . . 

(18) 

After integrating of left side member we obtain 

(19) 
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Fig. 5. The phase portrait of neuronal dynamics at initial conditions (IC): ICI-V(O) = -0.7. the derivative of 
V equals 0; IC2- 0.3, 0.1; IC3-O.7. 0.0; IC4-2.0, 0.1, respectively. 

where io is the value at V = Vr . 

Since no current is required in the cable at the resting potential, io = 0, and Eq. 19 
becomes 

Some conclusions from Eq. 20 are: 
1. The cable input current· voltage relation h (V) is less nonlinear than ii (V) 

because I depends on the integral of ii(V), More extreme nonlinearities are 
smoothed in the cable. 

2. The minimum threshold voltage V = vth occurs at this conditions: 

or 

l Vu 1 v", h(v)dv = h(v)dv. 
Vr ~J, 

(20) 

(21) 

(22) 

A change of integrals of Eq. 22 is presented by I n(V) in Fig. 4. V = vth is the 
minimum threshold value for the voltage in the dendrite as a cable. 
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3. A negative chord conductance region (Fig. 3, area near Vu) is not the reason for 

the appearance of the threshold voltage. 
Thus, we have obtained the main conditions for voltage thresholds in the dendrite as 

a cable with strong N-shaped nonlinearities. Now we have to show how this dendritic 
membrane phenomenon may be used to construct artificial intelligence logic functions. 

3. Modelling by the Compartment Approach 

3.1. Propagation of Excitation in Dendritic Membrane Circuits 

When the threshold potential of excitation is exceeded, the all-or-nothing potential wave 
propagates in dendritic media. Now the cable current flows from excited to resting areas, 
this propagation has been proven experimentally by Hodgkin (1937) but a quantatitive 
theory was formulated only in 1952 (Hodgkin and Huxley, 1952). Full numerical solu­
tions of propagation excitation appeared rather late (Coley and Dodge, 1966; Noble and 
Stein, 1966). 

We now consider a simple electric circuit to explain the potential wave propagation in 
the cable. Let a scheme of membrane consist of the resting resistance, capacitance, and 
a sodium current circuit which are placed in parallel through the axial resistance of the 
cable (Fig. 6a). 

Let, in the beginning, the left-hand circuit be in a state similar to the right-hand circuit 
after an external generator was applied to charge the capacitor Cm. Then, a switch K in 
the sodium circuit turns on and the sodium current from its battery passes also to the 
capacitance charging it more. Now the left-hand circuit becomes as a generator which 
charges the right-hand circuit, and after achieving threshold voltage, the right switch is 
off and the inward current charges the right-hand capacitance. In such a way, the excited 
potential will be propagated along the line of dendrite. The switching event is shown in 
Fig.6b. 

Let the electric circuit be turned on by external sources, Is be given from G (Fig. 6a). 

Let Is= ° . The remaining circuit will be a natural termination circuit with the end 
of a dendrite sealed by the membrane. On the basis of current conservation at x = 0, 
the current through the terminal membrane at x = 0- will be equal to the longitudinal 
current at x = 0+. Then 

Cm vt(O, t) = (l/rm)V:v(O, t) + l/rm V(O, t), t > 0. (23) 

If an external current Is is now applied at x = 0-, we obtain 

Cm vt(O, t) - l/rm Vx(O, t) - l/rm V(O, t) = Is(O, t), t > 0. (24) 

These circuits considered allow us to construct new ones which in turn provide logic 
operations. 
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Fig. 6. Simple electrical circuit of potential wave propagation in the cable (a). Current-voltage diagram in the 
switch-line of conductance (b). 

3.2. Main Differential Equations/or the Compartment Approach 

We begin by discussing some aspects of biological neuron morphology point of view. A 
biological neuron includes, in sequence synapses, dendrites, soma, axon, and once again 
synapses. The synapse is a long-term memory element where an experience accumulates 
on behalf of synaptic strengths. 

Now we suppose, that three main mathematical operations: aggregation, threshold­
ing, and nonlinear mapping, which usually occur in the soma, may be transfered to the 
dendritic region. We have shown above that dendrites have abilities similar to that of 
soma. After that, a reasonable question arises. What is the function of soma for? We sup­
pose that soma fultills similar operations only on another cognitive level of abstraction of 

information processing. 
Now we present some artiticiallogic circuits based on N -shaped nonlinearities of the 

dendritic membrane. A logic circuit of the OR operation has been implemented by two 
nonlinear synapses and one stimulus current which are connected as a natural termination 
circuit with the lumped termination of synapses and stimulus currents (Fig. 7). 

FoIlowing Segev et al. (1989) the dynamic differential equations in the middle of 
the dendrite as a distributed electric line circuit added by synapses and stimulus will be 
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Fig. 7. Electrical circuit of external current applied at tennination x = O. 

cmdVj / dt + I~~~l + I~~~2 + Istimj + Ileak.! + Ii; 
= ga:i-l,j(Vj-l - Vj) - ga;,i+l(Vj - Vj+1), (25) 

where gaj-i,; is the axial conductance between the (j - 1 )th and the jth compartment of 
the line. 

The synaptic and other currents may be induced by as a product of the potentials as 
follows 

(26) 

where gWnl' gWn2 are synaptic conductances at the jth point between compartments 
usually accepted as time-dependent, but voltage-independent (conductive pathway based 

on the "alpha" function) (RaIl, 1967; Jack et al., 1975; Segev et al., 1989). . 
E~L~l , E~~~2 are reversal constant voltages for two synapses, respectively. 
Istim:i is the stimulus current at the point j presented by the passive part of the den­

dritic membrane circuit. 
The leakage current is as follows 

Ileak.; = gleak.; (Vj - Eleak ;), (27) 

where meak; is a constant battery voltage at the jth point of the line. 
At last, Iij is the ionic current of the dendritic membrane at the jth point. It is pre­

sented as follows 

h = gdV, t)CVJ· - Ed, .1.1 3 
(28) 
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where gi'i (V, t) is, in general case, a voltage-and time-dependent conductance at the jth 
point of the line; we consider it as only a voltage-dependent conductance. 

Eij is the reversal constant voltage in the ionic current branch at the jth point. 
After substituting Eqs. 26-28 to Eq. 25 and regarding that the jth point of the circuit 

(Fig. 7) is the original one at x = 0, the dynamic differential equation looks like this 

cmdVo/dt + g~~~, (VD - E~~~J + g~~~2 (VD - E~~~2) + Istim 

+ gleako (Vo - Eleako) + 9io (V) (VO - Eio) = gaOl (Vo - V1). (29) 

This equation is the boundary condition at x = 0 for differential Eq. 24 in a semi­
infinite cable. The solution of Eqs. 24 and 29, as shown by Segel et al. (1989), may be 
obtained using the numerical nonstandard means of SPICE software (Vladimirescu et 

al., 1981). We used the GENESIS (GEneral NEural SImulation System) developed by 
J. Bower's group at the California Institute of Technology and described by Bower and 
Beeman (1994). 

4. Logic Circuits in Static and Dynamic Approaches 

4.1. Static Dendritic Logic Circuits 

Neurophysiological simple logic operations in a natural dendrite were observed in Koch 
et al. (1983). Some rather descriptive considerations on their possible existence were 
presented theoretically by Gutman (1984). The numerical experiment was carried out on 
an elementary dendritic branch by principle possibilities of constructing dendritic logic 
circuits. Afterwards we present the numerical model results in dynamics. 

In a steady-state dV/dt = 0 at t -) 00 and the potential depends on the distance x. 
For simplicity, consider that the important variables are: synaptic conductances gi, the 
difference of pre-and postsynaptic potentials Vi, and the stimulus current that remains 
constant at the point x = o. 

The construction of dendritic logic circuits is founded on the following rule: if the sum 
of all external currents (including the inward ionic reversal current charged the membrane 
capacitance) becomes larger than the threshold current Ith (the depolarizing potential is 
higher than the threshold voltage 11th), then a jump potential will appear; if the sum of 
all currents is smaller or equal to Ith and potential is lower or equal to V'th, the jump 
potential will appear, then 

if g1 V1 + g2 V2 + Istim + im > Ith, 
if g1 VI + g2 V2 + Istim + im ~ Ith, 

(30) 

where im is the sum of ionic and leakage currents which are not changed in dependence 
of the variables of synapses and the stimulus current. 

Now we consider simple logic circuits OR, AND, and MAJOR. The example of OR 
circuit (Fig. 8) is built on the basis of such illustrated values. Let g1 = g2 = IOnS; 
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Dendrite 

Fig. 8. Dendrite OR logic circuit. 

Table 1 

The OR logic circuit operation 

91 VI 92V2 I.tim + im Sum VI ORV2 

10 x 0 10 x 0 7 7 <10: ClassA 

10 xl 10 x 0 7 17 >10: ClassB 

10 x 0 10 xl 7 17 >10: ClassB 

10 xl 10 xl 7 27 >10: ClassB 

Table 2 

The AND logic circuit operation 

91 VI 92V2 Iinh + im Sum VIANDV2 

10 x 0 10 x 0 -3 -3 <10: ClassA 

10 xl 10 x 0 -3 7 <10: ClassA 

10 x 0 10 xl -3 7 <10: ClassA 

10 xl 10 xl -3 17 >10: ClassB 

V1 = V2 = ImV; I stim = 5nA; Im = 2nA; Ith = IOnA, and 11th = 20mVas 
hypothetic data. The operations of OR circuit and the result of classification are presented 
in Table 1. 

The AND logic circuit is obtained if the current of the inhibition synapse for hy­
perpolarizing the membrane potential is taken instead of the stimulus current, that is 
Iinh = -3nA (Fig. 9, Table 2). 

If we take three or more excited synapses and one inhibited synapse, we can simply 
build MAJOR dendritic logic circuit (Fig. 10). In this case, class A will be represented 
when one synapse is excited, that is, class A: (0,0,0,), (0,1,0), (0,0,1), (1,0,0), and 
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Dendrite 

Fig. 9. Dendrite AND logic circuit. 
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Fig. 10. Dendrite MAJOR logic circuit. 
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I 
I 

I (1.0,0) VI 

Fig. 11. The geometrical illustration of MAJOR logic circuit. 
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class B - when two or more are excited, that is, class B: (1, 1, 0,), (1,0,1), (0,1,1), 
(1, 1, 1). A geometrical illustration of MAJOR logic circuit classification at unity values 

is given in Fig. 11. Here the values inside the area of the plate including it form class A, 
and outside - class B. 

According to Koch et al. (1983), when synapses are situated close to each other on 
the dendrite, the veto operation may be observed, especially between a silent inhibition 
and excitation. This operation is like an analog version of a digital NOT AND gate. 

Further, if we let the negation (inversion) operation which is like the veto one, we 

easily succeed on obtaining the universal Shepher's and Pirson's logic circuits NOT OR 
and NOT AND, respectively. Basing upon some of them and the inversion element, all 

necessary logic functions may be built. 

4.2. Numerical Simulation of Dendritic Logic Circuits in Dynamics 

The numerical simulation of dendrite membrane processes in dynamics was carried out 
by numerical integration methods according to Bower and Beeman (1994). There was 
the Eq. 29 integrated by the exponential Eular method. The current brief pulse (2 msec.) 
injection was applied to the soma of the uniform cable. 

For numerical simulation of OR and AND dendritic logic circuits three uniform com­
partments of dendrite and soma circuits were taken. The injection current pulse was ap­
plied to soma. The input of the dendritic logic circuit was the point between the second 
and third compartments similarly that shown in Fig. 7. Two excited synapses and a stim­
ulus current were also applied, or in the case of AND logic circuit, an inhibitory current. 
Both the stimulus and the inhibitory current present a bias of logic circuits. 

Numerical simulation of OR and AND dendritic logic circuits has performed by GEN­
ESIS (Bower and Beeman, 1994) specialized for modelling of neurobiological phenom­
ena in brain. 

Under the stimulus current influence upon soma the membrane potential has changed 
in time (Fig. 12, 13, curves, Vm ). If we take the threshold potential, vth=12 mY, the OR 
logic circuit works in such a way. 

There are such combinations of two synapses: 00 means no synapses (Fig. 12, Vm:OO), 
01 and 10 mean that only one synapses is excited (Fig. 12, Vm :Ol ), and 11 means two 
excited synapses (Fig. 12, Vm:ll). 

In the case of 00, the maximum of membrane potential courses in time at the output 
of the third compartment does not exceed the threshold potential; in the cases 01, 10, and 
11 the maximum becomes higher than the threshold potential. It means that the OR logic 
circuit operations shown in Table 1 are confirmed. At the same threshold potential AND 
dendritic logic circuit operations are also confirmed. 

According to Fig. 13, Vm:OO and Vm:Ol the maximum potential is lower than vth and 
it stands for class A (Table 1). Class B is coincidental with a combination of two excited 
synapses. This event is presented in Fig. 13, curve Vm: 11. 

Thus, we have confirmed the possibilities to build dendritic logic circuits based upon 
numerical dynamical simulation, 
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5. Conclusions 
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Fig. 12. Dendritic OR logic circuit potentials versus time. 
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Fig. 13. Dendritic AND logic circuit potentials versus time. 

Basing upon the extended theoretical studies of nonlinearities and possibilities of a den­
dritic logic construction in the neuronal structure we would like to emphasize the follow­
ing: 

(1) The dendrite membrane nonlinear current-voltage relation with two stable points 
creates a presumption of carrying out some logic functions; 

(2) Using the bistable dynamic theory in physical systems, switch waves in a dendrite. 
medium of neurones were discovered instead of forming hysteresis as it has been 
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proposed in recent works. Under our considerations the existing threshold 
potential switch wave caries modulated information in the medium as a 

non-homogeneous line of cable; 
(3) The electrical analogy used to describe the static and dynamic processes in the 

neuronal medium allowed us to simulate main simple logic constructions: OR, 
AND,MAJOR; 

(4) Note that the theoretical substantiation and numerical experiments are only the 
first step forward to the proving of neuronal dendritic logic constructions for 
generalised imagination of neuronal computing in the brain. 
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Dinaminiq: sinapse-dendritas-l~stele neuroniniq: procesq: 
skaitmeninis modeIiavimas 

AIgis GARLIAUSKAS 

Smegenq veiklos procesuose ypatingq vaidmen\ vaidina netiesiskumo charakteristikos. Be zi­
nomq netiesines sigmoidines neurono lqsteles priklausomybes, ypatingq reiksmy turi N-formos 
dendrito membranos charakteristika. Remiantis ja parodyta loginiq operacijll konstravimo galimy­
be. Atliktas sill operacijll skaitmeninis modeliavimas prie statinill ir dinaminill s<!lygl\. 

Pabreziama, kad apart modeliavimo tik intensyvus neurofiziologinis tyrimas gali atverti galutin\ 
zmogaus smegenll neuroninio skaiciavimo mechanizmCj. 


