In this paper, firstly, we propose two new GTHFNs-prioritized aggregation operators called generalized trapezoidal hesitant fuzzy number prioritized weighted average operator and generalized trapezoidal hesitant fuzzy number prioritized weighted geometric operator. Secondly, we investigate the fundamental properties of the operators in detail such as idempotency, boundedness and monotonicity. Thirdly, we propose a method based on the developed GTHF-numbers prioritized aggregation operators for solving an MADM problem with GTHF-numbers. Fourthly, we give a numerical example of the developed method. Finally, a comparative analysis is given with some existing methods in solving an MADM problem with GTHF-numbers.
Pub. online:23 Mar 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 1 (2020), pp. 35–63
Abstract
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a very common and useful method for solving multi-criteria decision making problems in certain and uncertain environments. Single valued neutrosophic hesitant fuzzy set (SVNHFS) and interval neutrosophic hesitant fuzzy set (INHFS) are developed on the integration of neutrosophic set and hesitant fuzzy set. In this paper, we extend TOPSIS method for multi-attribute decision making based on single valued neutrosophic hesitant fuzzy set and interval neutrosophic hesitant fuzzy set. Furthermore, we assume that the attribute weights are known, incompletely known or completely unknown. We establish two optimization models for SVNHFS and INHFS with the help of maximum deviation method. Finally, we provide two numerical examples to validate the proposed approach.
Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 2 (2019), pp. 213–242
Abstract
Neutrosophic hesitant fuzzy set (NHFS) is a convincing tool that deals with uncertain information. In this paper, we propose an NH-MADM strategy for solving MADM with NHFSs based on extended GRA. We assume that the information of attributes is partially known or completely unknown. We develop two models to determine the weights of attributes. Then we rank the alternatives based on the strategy. Further, we extend the strategy into MADM in interval neutrosophic hesitant fuzzy set environment which we call INH-MADM strategy. Finally, we provide two illustrative examples to show the validity and effectiveness of the proposed strategies.
Journal:Informatica
Volume 27, Issue 4 (2016), pp. 863–892
Abstract
This paper investigates a kind of hybrid multiple attribute decision making (MADM) problems with incomplete attribute weight information and develops a hesitant fuzzy programming method based on the linear programming technique for multidimensional analysis of preference (LINMAP). In this method, decision maker (DM) gives preferences over alternatives by the pair-wise comparison with hesitant fuzzy truth degrees and the evaluation values are expressed as crisp numbers, intervals, intuitionistic fuzzy sets (IFSs), linguistic variables and hesitant fuzzy sets (HFSs). First, by calculating the relative projections of alternatives on the positive ideal solution (PIS) and negative ideal solution (NIS), the overall relative closeness degrees of alternatives associated with attribute weights are derived. Then, the hesitant fuzzy consistency and inconsistency measures are defined. Through minimizing the inconsistency measure and maximizing the consistency measure simultaneously, a new bi-objective hesitant fuzzy programming model is constructed and a novel solution method is developed. Thereby, the weights of attributes are determined objectively. Subsequently, the ranking order of alternatives is generated based on the overall relative closeness degrees of alternatives. Finally, a supplier selection example is provided to show the validity and applicability of the proposed method.