Journal:Informatica
Volume 26, Issue 2 (2015), pp. 259–282
Abstract
Abstract
Effective movement of materials plays an important role in successful operation of any organization. Proper methods adopted for material movement are also crucial for the overall safety of the personnel involved in the manufacturing processes. Selection of the appropriate material handling equipment (MHE) is a vital task for improving productivity of an organization. In today’s technological era, varieties of MHEs are available to carry out a desired task. Depending on the type of material to be moved, there are many quantitative and qualitative factors influencing the selection decision of a suitable MHE. The problem of selecting the right type of MHE for a given purpose can be solved using multi-criteria decision-making (MCDM) methods which are capable of dealing with the combination of crisp and fuzzy data. In this paper, an MCDM method employing fuzzy axiomatic design principles is applied for selecting the most appropriate MHE for the given task. As a measure of suitability, the total information content is calculated for each MHE and the MHE alternative with the least total information content is regarded as the best choice. Two real time problems from the literature, i.e. selection of an automated guided vehicle, and selection of loading and hauling equipments in surface mines, are solved to validate the applicability, flexibility and potentiality of the adopted approach.