Journal:Informatica
Volume 24, Issue 2 (2013), pp. 169–180
Abstract
The Matrix Bandwidth Minimization Problem (MBMP) seeks for a simultaneous reordering of the rows and the columns of a square matrix such that the nonzero entries are collected within a band of small width close to the main diagonal. The MBMP is a NP-complete problem, with applications in many scientific domains, linear systems, artificial intelligence, and real-life situations in industry, logistics, information recovery. The complex problems are hard to solve, that is why any attempt to improve their solutions is beneficent. Genetic algorithms and ant-based systems are Soft Computing methods used in this paper in order to solve some MBMP instances. Our approach is based on a learning agent-based model involving a local search procedure. The algorithm is compared with the classical Cuthill-McKee algorithm, and with a hybrid genetic algorithm, using several instances from Matrix Market collection. Computational experiments confirm a good performance of the proposed algorithms for the considered set of MBMP instances. On Soft Computing basis, we also propose a new theoretical Reinforcement Learning model for solving the MBMP.
Journal:Informatica
Volume 14, Issue 2 (2003), pp. 237–250
Abstract
Reinforcement learning addresses the question of how an autonomous agent can learn to choose optimal actions to achieve its goals. Efficient exploration is of fundamental importance for autonomous agents that learn to act. Previous approaches to exploration in reinforcement learning usually address exploration in the case when the environment is fully observable. In contrast, we study the case when the environment is only partially observable. We consider different exploration techniques applied to the learning algorithm “Utile Suffix Memory”, and, in addition, discuss an adaptive fringe depth. Experimental results in a partially observable maze show that exploration techniques have serious impact on performance of learning algorithm.