Pub. online:23 Mar 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 1 (2020), pp. 131–142
Abstract
The Industry 4.0 and smart city solutions are impossible to be implemented without using IoT devices. There can be several problems in acquiring data from these IoT devices, problems that can lead to missing values. Without a complete set of data, the automation of processes is not possible or is not satisfying enough. The aim of this paper is to introduce a new algorithm that can be used to fill in the missing values of signals sent by IoT devices. In order to do that, we introduce Shepard local approximation operators in Riesz MV-algebras for one variable function and we structure the set of possible values of the IoT devices signals as Riesz MV-algebra. Based on these local approximation operators we define a new algorithm and we test it to prove that it can be used to fill in the missing values of signals sent by IoT devices.
Journal:Informatica
Volume 20, Issue 2 (2009), pp. 217–234
Abstract
It is known that the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to some machine learning techniques, is NP-hard and does not belong to Apx class unless P=NP. In this paper, it is shown that the MASC problem formulated in a fixed dimension space within n>1 is intractable even if sets defining an instance of the problem are in general position. A new polynomial-time approximation algorithm for this modification of the MASC problem is presented. An approximation ratio and complexity bounds of the algorithm are obtained.