Journal:Informatica
Volume 24, Issue 1 (2013), pp. 153–168
Abstract
Grey numbers facilitate the representation of uncertainty not only for elements of a set, but also the set itself as a whole. This paper utilizes the notion of possibility degree from grey system theory coupled with the idea of dominance relation and partial order set (poset) from rough theory to represent uncertain information in a manner that maintains the degree of uncertainty of information for each tuple of the original data. Concept lattices of grey information system are constructed and a decision-making algorithm that combines with grey relational grade is described. A case study is used to demonstrate the supplier selection problem applying the proposed method. The research has concluded that the method is appropriate to use.
Journal:Informatica
Volume 20, Issue 2 (2009), pp. 305–320
Abstract
Multi-attribute analysis is a useful tool in many economical, managerial, constructional, etc. problems. The accuracy of performance measures in COPRAS (The multi-attribute COmplex PRoportional ASsessment of alternatives) method is usually assumed to be accurate. This method assumes direct and proportional dependence of the weight and utility degree of investigated versions on a system of attributes adequately describing the alternatives and on values and weights of the attributes. However, there is usually some uncertainty involved in all multi-attribute model inputs. The objective of this research is to demonstrate how simulation can be used to reflect fuzzy inputs, which allows more complete interpretation of model results. A case study is used to demonstrate the concept of general contractor choice of on the basis of multiple attributes of efficiency with fuzzy inputs applying COPRAS-G method. The research has concluded that the COPRAS-G method is appropriate to use.
Journal:Informatica
Volume 19, Issue 2 (2008), pp. 161–190
Abstract
In this paper, a new multi-criteria decision-making procedure is presented, which captures preferential information in the form of the threshold model. It is based on the ELECTRE-like sorting analysis restricted by the localization principle, which enables high adaptability of the decision model and reduces the cognitive load imposed on the decision-makers. It lays the foundation for the introduction of three concepts that have been previously insufficiently supported by outranking methods – semiautomatic derivation of criteria weights according to the selective effects of discordance and veto thresholds, convergent group consensus seeking, and autonomous multi-agent negotiation. The interdependent principles are justified, and the methodological solutions underlying their implementation are provided.
Journal:Informatica
Volume 17, Issue 4 (2006), pp. 601–618
Abstract
The paper analyses the problem of ranking accuracy in multiple criteria decision-making (MCDM) methods. The methodology for measuring the accuracy of determining the relative significance of alternatives as a function of the criteria values is developed. An algorithm of the Technique for the Order Preference by Similarity to Ideal Solution (TOPSIS) that applies criteria values' transformation through a normalization of vectors and the linear transformation is considered. A computational experiment is presented, to compare the results of a multiple criteria analysis and the ranking accuracy in a particular situation.