Journal:Informatica
Volume 20, Issue 2 (2009), pp. 217–234
Abstract
It is known that the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to some machine learning techniques, is NP-hard and does not belong to Apx class unless P=NP. In this paper, it is shown that the MASC problem formulated in a fixed dimension space within n>1 is intractable even if sets defining an instance of the problem are in general position. A new polynomial-time approximation algorithm for this modification of the MASC problem is presented. An approximation ratio and complexity bounds of the algorithm are obtained.
Journal:Informatica
Volume 17, Issue 1 (2006), pp. 13–24
Abstract
We study single machine scheduling problems, where processing times of the jobs are exponential functions of their start times. For increasing functions, we prove strong NP-hardness of the makespan minimization problem with arbitrary job release times. For decreasing functions, maximum lateness minimization problem is proved to be strongly NP-hard and total weighted completion time minimization problem is proved to be ordinary NP-hard. Heuristic algorithms are presented and computationally tested for these problems.