Pub. online:15 Jun 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 3 (2023), pp. 449–464
Abstract
Many confidential multimedia, such as personal privacy, commercial, and military secrets, are transmitted on the Internet. To prevent this confidential multimedia from being eavesdropped on by illegal users, information-hiding technology is a leading research topic nowadays. One of the important research topics of information-hiding technology is coverless information hiding, which utilizes the unchanged property of its multimedia carrier to hide secret information. In this paper, we propose two schemes that employ the average pixel value of an image. The first is an extension of the Coverless Information Hiding Based on the Most Significant Bit (CIHMSB) scheme, referred to as E-CIHMSB. In the E-CIHMSB, we build an extended matrix containing the image fragment’s average pixel value. The second scheme is a combination theory-based CIHMSB, referred to as CB-CIHMSB. In the CB-CIHMSB, we construct the combined matrix. E-CIHMSB and CB-CIHMSB embed the secret bits by changing the most significant bits of the chosen pixel in the matrix. Experimental results show that our schemes achieved higher hiding capacity than previous related schemes. Moreover, the proposed scheme is more robust against steganalysis tools and image quality attacks such as Additive Gaussian White Noise (AWGN), Salt & Pepper noise, low-pass filtering attacks, and JPEG compression attacks than CIHMSB.
Pub. online:22 Jun 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 1 (2021), pp. 69–84
Abstract
Clinics and hospitals have already adopted more technological resources to provide a faster and more precise diagnostic for patients, health care providers, and institutes of medicine. Security issues get more and more important in medical services via communication resources such as Wireless-Fidelity (Wi-Fi), third generation of mobile telecommunications technology (3G), and other mobile devices to connect medical systems from anywhere. Furthermore, cloud-based medical systems allow users to access archived medical images from anywhere. In order to protect medical images, lossless data hiding methods are efficient and easy techniques. In this paper, we present a data hiding of two-tier medical images based on histogram shifting of prediction errors. The median histogram shifting technique and prediction error schemes as the two-tier hiding have high capacity and PSNR in 16-bit medical images.