Pub. online:15 Nov 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 4 (2021), pp. 741–757
Abstract
Computed tomography coronary angiography (CTCA) is a non-invasive, powerful image processing technique for assessing coronary artery disease. The aim of the paper is to evaluate the diagnostic role of CTCA using optimal scanning parameters and to investigate the effect of low kilovoltage CTCA on the qualitative and quantitative image parameters and radiation dose in overweight and obese patients. Consolidation of knowledge in medicine and image processing was used to achieve the aim, and performance was evaluated in a clinical setting. Elevated body mass index is one of the factors causing increased radiation dose to patients. This study examined the feasibility of 80-kV and 100-kV CTCA in overweight and obese adult patients, comparing radiation doses and image quality versus standardized 100-kV protocols in the group of overweight patients and 120-kV CTCA in the group of obese patients. Qualitative and quantitative image parameters were determined in proximal and distal segments of the coronary arteries. Quantitative assessment was determined by the contrast-to-noise ratio and signal-to-noise ratio. The results of the study showed that in overweight and obese patients, the low dose protocol affords radiation dose reduction of 35% and 41%, respectively. Image quality was found to be diagnostically acceptable in all cases.
Journal:Informatica
Volume 21, Issue 3 (2010), pp. 455–470
Abstract
In this article, a method is proposed for analysing the thermovision-based video data that characterize the dynamics of temperature anisotropy of the heart tissue in a spatial domain. Many cardiac rhythm disturbances at present time are treated by applying destructive energy sources. One of the most common source and the related methodology is to use radio-frequency ablation procedure. However, the rate of the risk of complications including arrhythmia recurrence remains enough high. The drawback of the methodology used is that the suchlike destruction procedure cannot be monitored by visual spectra and results in the inability to control the ablation efficiency. To the end of understanding the nature of possible complications and controlling the treating process, the means of thermovision could be used. The aim of the study was to analyse possible mechanisms of these complications, measure and determine optimal radio-frequency ablation parameters, according to the analysis of video data, acquired using thermovision.