Pub. online:2 Jun 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 2 (2020), pp. 249–275
Abstract
Emotion recognition from facial expressions has gained much interest over the last few decades. In the literature, the common approach, used for facial emotion recognition (FER), consists of these steps: image pre-processing, face detection, facial feature extraction, and facial expression classification (recognition). We have developed a method for FER that is absolutely different from this common approach. Our method is based on the dimensional model of emotions as well as on using the kriging predictor of Fractional Brownian Vector Field. The classification problem, related to the recognition of facial emotions, is formulated and solved. The relationship of different emotions is estimated by expert psychologists by putting different emotions as the points on the plane. The goal is to get an estimate of a new picture emotion on the plane by kriging and determine which emotion, identified by psychologists, is the closest one. Seven basic emotions (Joy, Sadness, Surprise, Disgust, Anger, Fear, and Neutral) have been chosen. The accuracy of classification into seven classes has been obtained approximately 50%, if we make a decision on the basis of the closest basic emotion. It has been ascertained that the kriging predictor is suitable for facial emotion recognition in the case of small sets of pictures. More sophisticated classification strategies may increase the accuracy, when grouping of the basic emotions is applied.
Journal:Informatica
Volume 27, Issue 2 (2016), pp. 257–281
Abstract
The estimation of intrinsic dimensionality of high-dimensional data still remains a challenging issue. Various approaches to interpret and estimate the intrinsic dimensionality are developed. Referring to the following two classifications of estimators of the intrinsic dimensionality – local/global estimators and projection techniques/geometric approaches – we focus on the fractal-based methods that are assigned to the global estimators and geometric approaches. The computational aspects of estimating the intrinsic dimensionality of high-dimensional data are the core issue in this paper. The advantages and disadvantages of the fractal-based methods are disclosed and applications of these methods are presented briefly.
Journal:Informatica
Volume 20, Issue 2 (2009), pp. 235–254
Abstract
Most of real-life data are not often truly high-dimensional. The data points just lie on a low-dimensional manifold embedded in a high-dimensional space. Nonlinear manifold learning methods automatically discover the low-dimensional nonlinear manifold in a high-dimensional data space and then embed the data points into a low-dimensional embedding space, preserving the underlying structure in the data. In this paper, we have used the locally linear embedding method on purpose to unravel a manifold. In order to quantitatively estimate the topology preservation of a manifold after unfolding it in a low-dimensional space, some quantitative numerical measure must be used. There are lots of different measures of topology preservation. We have investigated three measures: Spearman's rho, Konig's measure (KM), and mean relative rank errors (MRRE). After investigating different manifolds, it turned out that only KM and MRRE gave proper results of manifold topology preservation in all the cases. The main reason is that Spearman's rho considers distances between all the pairs of points from the analysed data set, while KM and MRRE evaluate a limited number of neighbours of each point from the analysed data set.