Pub. online:5 Aug 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 2 (2019), pp. 293–325
Abstract
The Hamy mean (HM) operator, as a convenient mathematical aggregation tool, can deal with the interrelationship among multiple input parameters, and the power average (PA) operator can relieve the influence of awkward assessment values in the decision consequences. The interval neutrosophic sets (INSs) are a more powerful mathematical tool to handle insufficient, indeterminate and vague information that exists in real life problems. Yet, in some complicated decision-making situations, we require to consider the correlation between multi-input arguments and remove the influence of awkward data at the same time. To deal with such situations, in this paper, we combine the conventional HM operator to the traditional PA operator in interval neutrosophic settings and present two novel interval neutrosophic aggregation operators, that is, the interval neutrosophic power Hamy mean (INPHM) operator and the weighted interval neutrosophic power Hamy mean (WINPHM) operators. Then, some preferable properties of the developed aggregation operators are discussed. Moreover, based on these developed aggregation operators, we propose a new method for multiple attribute group decision making (MAGDM) under the INSs. Lastly, some examples are given to show the effectiveness of the developed method by comparing it with other existing methods.