Pub. online:7 Nov 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 4 (2023), pp. 743–769
Abstract
Ligand-Based Virtual Screening accelerates and cheapens the design of new drugs. However, it needs efficient optimizers because of the size of compound databases. This work proposes a new method called Tangram CW. The proposal also encloses a knowledge-based filter of compounds. Tangram CW achieves comparable results to the state-of-the-art tools OptiPharm and 2L-GO-Pharm using about a tenth of their computational budget without filtering. Activating it discards more than two thirds of the database while keeping the desired compounds. Thus, it is possible to consider molecular flexibility despite increasing the options. The implemented software package is public.
Journal:Informatica
Volume 32, Issue 3 (2021), pp. 477–498
Abstract
This work compares different algorithms to replace the genetic optimizer used in a recent methodology for creating realistic and computationally efficient neuron models. That method focuses on single-neuron processing and has been applied to cerebellar granule cells. It relies on the adaptive-exponential integrate-and-fire (AdEx) model, which must be adjusted with experimental data. The alternatives considered are: i) a memetic extension of the original genetic method, ii) Differential Evolution, iii) Teaching-Learning-Based Optimization, and iv) a local optimizer within a multi-start procedure. All of them ultimately outperform the original method, and the last two do it in all the scenarios considered.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 1 (2018), pp. 21–39
Abstract
The heliostat field of Solar Central Receiver Systems takes up to 50% of the initial investment and can cause up to 40% of energetic loss in operation. Hence, it must be carefully optimized. Design procedures usually rely on particular heliostat distribution models. In this work, optimization of the promising biomimetic distribution model is studied. Two stochastic population-based optimizers are applied to maximize the optical efficiency of fields: a genetic algorithm, micraGA, and a memetic one, UEGO. As far as the authors know, they have not been previously applied to this problem. However, they could be a good option according to their structure. Additionally, a Brute-Force Grid is used to estimate the global optimum and a Pure-Random Search is applied as a baseline reference. Our empirical results show that many different configurations of the distribution model lead to very similar solutions. Although micraGA exhibits poor performance, UEGO achieves the best results in a reduced time and seems appropriate for the problem at hand.