Pub. online:20 Jun 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 2 (2022), pp. 321–342
Abstract
Maps are a common tool for visualizing various statistical figures that describe development in our society. Domain experts, journalists, and general public can pose questions on how to emphasize regions where, for instance, most young patients have long stayed in hospitals. One of the visualization’s problems is expressing validities of short-quantified sentences for regions on maps. The truth value of a summary assigns a value from the unit interval, which makes it suitable for interpretation on maps by hues of a selected colour, but it does not reflect the data distribution among regions. To meet this goal, a new quality measure covering data distribution among districts and its aggregation by the ordinal sums of conjunctive and disjunctive functions with the truth value is proposed and documented on examples. The next proposal is a relative quantifier expressing significant proportion of entities. This model is applied to the interpretation of COVID-19 cases development in the Slovak Republic on real data from one health insurance company. Finally, this article discusses the applicability of the proposed approach in other areas where the interpretation of summarized sentences on maps is beneficial.
Journal:Informatica
Volume 31, Issue 4 (2020), pp. 841–856
Abstract
Data users are generally interested in two types of aggregated information: summarization of the selected attribute(s) for all considered entities, and retrieval and evaluation of entities by the requirements posed on the relevant attributes. Less statistically literate users (e.g. domain experts) and the business intelligence strategic dashboards can benefit from the linguistic summarization, i.e. a summary like the most of customers are middle–aged can be understood immediately. Evaluation of the mandatory and optional requirements of the structure ${P_{1}}$and most of the other posed predicates should be satisfied is beneficial for analytical business intelligence dashboards and search engines in general. This work formalizes the integration of aforementioned quantified summaries and quantified evaluation into the concept of database queries to empower their flexibility by, e.g. the nested quantified query conditions on hierarchical data structures. Next, this approach contributes to the mitigation of the empty answer problem in data retrieval tasks. Thus, the strategic and analytical dashboards as well as query engines might benefit from the proposed approach. Finally, the obtained results are illustrated on examples, the internal and external trustworthiness is elaborated, and the future research topics and applicability are discussed.