Pub. online:1 Jan 2017Type:Research ArticleOpen Access
Journal:Informatica
Volume 28, Issue 2 (2017), pp. 237–268
Abstract
Linguistic hesitant fuzzy sets (LHFSs) permit the decision maker to apply several linguistic terms with each having several membership degrees to denote his/her preference of one thing. This type of fuzzy sets can well address the qualitative and quantitative cognitions of the decision maker as well as reflect his/her hesitancy, uncertainty and inconsistency. This paper introduces a distance measure between any two LHFSs and then defines a correlation coefficient of LHFSs. Considering the application of LHFSs, the weighted distance measure and the weighted correlation coefficient of LHFSs are defined. To address the interactions between elements in a set, the Shapley weighted distance measure and the Shapley weighted correlation coefficient are presented. It is worth noting that when the elements are independent, they degenerate to the associated weighted distance measure and the weighted correlation coefficient, respectively. After that, their application to pattern recognition is studied. Furthermore, an approach to multi-attribute decision making under linguistic hesitant fuzzy environment is developed. Meanwhile, numerical examples are offered to show the concrete application of the developed procedure.