Pub. online:7 Dec 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 4 (2022), pp. 749–769
Abstract
In this paper, we propose a light-weight electronic voting protocol. The approach used by our protocol to conceal the ballots does not imply encryption, and guarantees the privacy of the direction of the vote unless all the contestants (parties) agree to do so. Our method is based on the division of the ballot into different pieces of information, which separately reveal no information at all, and that can be latter aggregated to recover the original vote. We show that, despite its simplicity, this scheme is powerful, it does not sacrifice any of the security properties demanded in a formal electronic voting protocol, and, furthermore, even in post-quantum scenarios, neither the casted votes can be tampered with, nor the identity of any elector can be linked with the direction of her vote.
Pub. online:8 Feb 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 2 (2021), pp. 321–355
Abstract
Voting systems are as useful as people are willing to use them. Although many electronic election schemes have been proposed through the years, and some real case scenarios have been tested, people still do not trust electronic voting. Voting is not only about technological challenges but also about credibility, therefore, we propose a voting system focused on trust. We introduce political parties as active partners in the elections as a mechanism to encourage more traditional electors to participate. The system we propose here preserves elector’s privacy, it operates publicly through a blockchain and it is auditable by third parties.