Pub. online:19 Aug 2024Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 3 (2024), pp. 601–616
Abstract
One of the main trends for the monitoring and control of business processes is to implement these processes via private blockchain systems. These systems must ensure data privacy and verifiability for the entire network here denoted by ‘Net’. In addition, every business activity should be declared to a trusted third party (TTP), such as an Audit Authority (AA), for tax declaration and collection purposes.
We present a solution for a confidential and verifiable realization of transactions based on the Unspent Transaction Output (UTxO) paradigm. This means that the total sum of transaction inputs (incomes) $In$ must be equal to the total sum of transaction outputs (expenses) $Ex$, satisfying the balance equation $In=Ex$. Privacy in a private blockchain must be achieved through the encryption of actual transaction values. However, it is crucial that all participants in the network be able to verify the validity of the transaction balance equation. This poses a challenge with probabilistically encrypted data. Moreover, the inputs and outputs are encrypted with different public keys. With the introduction of the AA, the number of different public keys for encryption can be reduced to two. Incomes are encrypted with the Receiver’s public key and expenses with the AA’s public key.
The novelty of our realization lies in taking additively-multiplicative, homomorphic ElGamal encryption and integrating it with a proposed paradigm of modified Schnorr identification providing a non-interactive zero-knowledge proof (NIZKP) using a cryptographically secure h-function. Introducing the AA as a structural element in a blockchain system based on the UTxO enables effective verification of encrypted transaction data for the Net. This is possible because the proposed NIZKP is able to prove the equivalency of two ciphertexts encrypted with two different public keys and different actors.
This integration allows all users on the Net to check the UTxO-based transaction balance equation on encrypted data. The security considerations of the proposed solution are presented.
Pub. online:6 May 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 2 (2020), pp. 277–298
Abstract
The vulnerable part of communications between user and server is the poor authentication level at the user’s side. For example, in e-banking systems for user authentication are used passwords that can be lost or swindled by a person maliciously impersonating bank.
To increase the security of e-banking system users should be supplied by the elements of public key infrastructure (PKI) but not necessary to the extent of standard requirements which are too complicated for ordinary users.
In this paper, we propose two versions of authenticated key agreement protocol (AKAP) which can be simply realized on the user’s side. AKAP is a collection of cryptographic functions having provable security properties.
It is proved that AKAP1 is secure against active adversary under discrete logarithm assumption when formulated certain conditions hold. AKAP2 provides user’s anonymity against eavesdropping adversary. The partial security of AKAP2 is investigated which relies on the security of asymmetric encryption function.