Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 3 (2018), pp. 499–516
Abstract
Crossover operators play a very important role by creation of genetic algorithms (GAs) which are applied in various areas of computer science, including combinatorial optimization. In this paper, fifteen genetic crossover procedures are designed and implemented using a modern C# programming language. The computational experiments have been conducted with these operators by solving the famous combinatorial optimization problem – the quadratic assignment problem (QAP). The results of the conducted experiments on the characteristic benchmark instances from the QAP instances library QAPLIB illustrate the relative performance of the examined crossover operations.
All crossover procedures are publicly available with the intention that the GA researchers will choose a procedure which suits the individual demand at the highest degree.
Journal:Informatica
Volume 20, Issue 2 (2009), pp. 255–272
Abstract
In this paper, an efficient hybrid genetic algorithm (HGA) and its variants for the well-known combinatorial optimization problem, the quadratic assignment problem (QAP) are discussed. In particular, we tested our algorithms on a special type of QAPs, the structured quadratic assignment problems. The results from the computational experiments on this class of problems demonstrate that HGAs allow to achieve near-optimal and (pseudo-)optimal solutions at very reasonable computation times. The obtained results also confirm that the hybrid genetic algorithms are among the most suitable heuristic approaches for this type of QAPs.
Journal:Informatica
Volume 17, Issue 2 (2006), pp. 237–258
Abstract
Recently, genetic algorithms (GAs) and their hybrids have achieved great success in solving difficult combinatorial optimization problems. In this paper, the issues related to the performance of the genetic search in the context of the grey pattern problem (GPP) are discussed. The main attention is paid to the investigation of the solution recombination, i.e., crossover operators which play an important role by developing robust genetic algorithms. We implemented seven crossover operators within the hybrid genetic algorithm (HGA) framework, and carried out the computational experiments in order to test the influence of the recombination operators to the genetic search process. We examined the one point crossover, the uniform like crossover, the cycle crossover, the swap path crossover, and others. A so-called multiple parent crossover based on a special type of recombination of several solutions was tried, too. The results obtained from the experiments on the GPP test instances demonstrate promising efficiency of the swap path and multiple parent crossovers.
Journal:Informatica
Volume 14, Issue 4 (2003), pp. 497–514
Abstract
The quadratic assignment problem (QAP) is one of the well‐known combinatorial optimization problems and is known for its various applications. In this paper, we propose a modified simulated annealing algorithm for the QAP – M‐SA‐QAP. The novelty of the proposed algorithm is an advanced formula of calculation of the initial and final temperatures, as well as an original cooling schedule with oscillation, i.e., periodical decreasing and increasing of the temperature. In addition, in order to improve the results obtained, the simulated annealing algorithm is combined with a tabu search approach based algorithm. We tested our algorithm on a number of instances from the library of the QAP instances – QAPLIB. The results obtained from the experiments show that the proposed algorithm appears to be superior to earlier versions of the simulated annealing for the QAP. The power of M‐SA‐QAP is also corroborated by the fact that the new best known solution was found for the one of the largest QAP instances – THO150.
Journal:Informatica
Volume 11, Issue 2 (2000), pp. 145–162
Abstract
Many heuristics, such as simulated annealing, genetic algorithms, greedy randomized adaptive search procedures are stochastic. In this paper, we propose a deterministic heuristic algorithm, which is applied to the quadratic assignment problem. We refer this algorithm to as intensive search algorithm (or briefly intensive search). We tested our algorithm on the various instances from the library of the QAP instances – QAPLIB. The results obtained from the experiments show that the proposed algorithm appears superior, in many cases, to the well-known algorithm – simulated annealing.
Journal:Informatica
Volume 5, Issues 3-4 (1994), pp. 439–451
Abstract
In this paper optimization aspects relatively to circuit component placement problem for gate array VLSI are discussed. Practical and theoretical aspects of the methods of component placement are concerned as well. Effective heuristic algorithms for the initial placement and iterative placement improvement are described. An original strategy of global placement optimization is investigated. Some experimental results based on an automatic placement subsystem for gate arrays – AUTOPLACE developed at Department of Practical Informatics of Kaunas University of Technology are presented.