Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 4 (2019), pp. 749–780
Abstract
Despite the mass of empirical data in neuroscience and plenty of interdisciplinary approaches in cognitive science, there are relatively few applicable theories of how the brain as a coherent system functions in terms of energy and entropy processes. Recently, a free energy principle has been portrayed as a possible way towards a unified brain theory. However, its capacity, using free energy and entropy, to unify different perspectives on brain function dynamics is yet to be established. This multidisciplinary study attempts to make sense of the free energy and entropy not only from the perspective of Helmholtz thermodynamic basic principles but also from the information theory framework. Based on the proposed conceptual framework, we constructed (i) four basic brain states (deep sleep, resting, active wakeful and thinking) as dynamic entropy and free energy processes and (ii) stylized a self-organizing mechanism of transitions between the basic brain states during a day period. Adaptive transitions between brain states represent homeostatic rhythms, which produce complex daily brain states dynamics. As a result, the proposed simulation model produces different self-organized circadian dynamics of brain states for different types of chronotypes, which corresponds with the empirical observations.
Journal:Informatica
Volume 10, Issue 2 (1999), pp. 231–244
Abstract
In this paper two popular time series prediction methods – the Auto Regression Moving Average (ARMA) and the multilayer perceptron (MLP) – are compared while forecasting seven real world economical time series. It is shown that the prediction accuracy of both methods is poor in ill-structured problems. In the well-structured cases, when prediction accuracy is high, the MLP predicts better providing lower mean prediction error.