This paper models and solves the scheduling problem of cable manufacturing industries that minimizes the total production cost, including processing, setup, and storing costs. Two hybrid meta-heuristics, which combine simulated annealing and variable neighbourhood search algorithms with tabu search algorithm, are proposed. Applying some case-based theorems and rules, a special initial solution with optimal setup cost is obtained for the algorithms. The computational experiments, including parameter tuning and final experiments over the benchmarks obtained from a real cable manufacturing factory, show superiority of the combination of tabu search and simulated annealing comparing to the other proposed hybrid and classical meta-heuristics.
The theory of T-spherical fuzzy (T-SF) sets possesses remarkable capability to manage intricate uncertain information. The REGIME method is a well-established technique concerning discrete choice analysis. This paper comes up with a multiple-criteria choice analysis approach supported by the REGIME structure for manipulating T-SF uncertainties. This paper constructs new-created measurements such as superiority identifiers and guide indices for relative attractiveness and fittingness, respectively, between T-SF characteristics. This study evolves the T-SF REGIME I and II prioritization procedures for decision support. The application and comparative studies exhibit the effectiveness and favorable features of the propounded T-SF REGIME methodology in real decisions.