Journal:Informatica
Volume 14, Issue 2 (2003), pp. 213–222
Abstract
This paper discusses the linear periodically time‐varying (LPTV) system parameter estimation using a block approach. An block algorithm is proposed for optimal estimation of the parameters of LPTV system from the input sequence and the output sequence corrupted by additive Gaussianly distributed noise. In the proposed method, the least squares error criterion has been used.The algorithm provides a useful computational tool based on an appropriate theoretical foundation for parameter estimation of linear time‐invariant (LTI) systems from input and output data. Simulation results are presented that demonstrate the performance of the approach.
Journal:Informatica
Volume 7, Issue 1 (1996), pp. 27–38
Abstract
In the papers (Kaminskas, 1973; Kaminskas and Nemura, 1975) the stopping rule of recursive least squares (RLS) is worked out using the length of the confidence interval for the respective current meaning of the true output signal of a linear dynamic system. The aim of the given paper is the development of techniques for calculating threshold intervals of respective criteria, used in such a stopping rule. In this connection adaptive threshold intervals based on the Cramer-Rao lower bound according to Pupeikis (1995) are proposed here, too. The results of numerical simulation by IBM PC/AT are given.
Journal:Informatica
Volume 6, Issue 3 (1995), pp. 299–312
Abstract
In the papers (Kaminskas, 1972; Kaminskas and Nemura, 1975; Yin, 1989) the stopping rules of recursive least squares (RLS) are worked out using the ellipsoidal confidence region for the respective parameter vector of a linear dynamic system. The aim of the given paper is the development of the technique for calculating threshold intervals of respective criterions, used in a stopping rule, which are presented in Kaminskas (1972). In this connection adaptive threshold intervals based on the Cramer-Rao lower bound are proposed here. The results of numerical simulation by IBM PC/AT are given.