Pub. online:14 Nov 2024Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 4 (2024), pp. 837–858
Abstract
This paper examines ranking reversal (RR) in Multiple Criteria Decision Making (MCDM) using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Through a mathematical analysis of min-max and max normalization techniques and distance metrics (Euclidean, Manhattan, and Chebyshev), the study explores their impact on RR, particularly when new, high-performing alternatives are introduced. This research provides insight into the causes of RR, offering a framework that clarifies when and why RR occurs. The findings help decision-makers select appropriate techniques, promoting more consistent and reliable outcomes in real-world MCDM applications.