Derivative-free DIRECT-type global optimization algorithms are increasingly favoured for their simplicity and effectiveness in addressing real-world optimization challenges. This review examines their practical applications through a systematic analysis of scientific journals and computational studies. In particular, significant challenges in reproducibility have been identified with practical problems. To address this, we conducted an experimental study using practical problems from reputable CEC libraries, comparing DIRECT-type techniques against their state-of-the-art counterparts. Therefore, this study sheds light on current gaps, opportunities, and future prospects for advanced research in this domain, laying the foundation for replicating and expanding the research findings presented herein.
Pub. online:28 Feb 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 2 (2023), pp. 415–448
Abstract
Multiple Criteria Decision-Making (MCDM) is one of the most reliable and applicable decision-making tools to address real-life complex and multi-dimensional problems in accordance with the concepts of sustainable development and circular economy. Although there have been several literature reviews on several MCDM methods, there is a research gap in conducting a literature review on the Multi-Attributive Border Approximation area Comparison (MABAC) as a useful technique to deal with intelligent decision-making systems. This study attempts to present a comprehensive literature review of 117 articles on recent developments and applications of MABAC. Future outlook is provided considering challenges and current trends.
Pub. online:29 Jan 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 1 (2021), pp. 85–118
Abstract
The data-driven approach is popular to automate learning of fuzzy rules and tuning membership function parameters in fuzzy inference systems (FIS) development. However, researchers highlight different challenges and issues of this FIS development because of its complexity. This paper evaluates the current state of the art of FIS development complexity issues in Computer Science, Software Engineering and Information Systems, specifically: 1) What complexity issues exist in the context of developing FIS? 2) Is it possible to systematize existing solutions of identified complexity issues? We have conducted a hybrid systematic literature review combined with a systematic mapping study that includes keyword map to address these questions. This review has identified the main FIS development complexity issues that practitioners should consider when developing FIS. The paper also proposes a framework of complexity issues and their possible solutions in FIS development.