Pub. online:6 Mar 2024Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 1 (2024), pp. 131–154
Abstract
Signcryption integrates both signature and encryption schemes into single scheme to ensure both content unforgeability (authentication) and message confidentiality while reducing computational complexity. Typically, both signers (senders) and decrypters (receivers) in a signcryption scheme belong to the same public-key systems. When signers and decrypters in a signcryption scheme belong to heterogeneous public-key systems, this scheme is called a hybrid signcryption scheme which provides more elastic usage than typical signcryption schemes. In recent years, a new kind of attack, named side-channel attack, allows adversaries to learn a portion of the secret keys used in cryptographic algorithms. To resist such an attack, leakage-resilient cryptography has been widely discussed and studied while a large number of leakage-resilient schemes have been proposed. Also, numerous hybrid signcryption schemes under heterogeneous public-key systems were proposed, but none of them possesses leakage-resilient property. In this paper, we propose the first hybrid signcryption scheme with leakage resilience, called leakage-resilient hybrid signcryption scheme, in heterogeneous public-key systems (LR-HSC-HPKS). Security proofs are demonstrated to show that the proposed scheme provides both authentication and confidentiality against two types of adversaries in heterogeneous public-key systems.
Journal:Informatica
Volume 31, Issue 3 (2020), pp. 597–620
Abstract
Very recently, side-channel attacks have threatened all traditional cryptographic schemes. Typically, in traditional cryptography, private/secret keys are assumed to be completely hidden to adversaries. However, by side-channel attacks, an adversary may extract fractional content of these private/secret keys. To resist side-channel attacks, leakage-resilient cryptography is a countermeasure. Identity-based public-key system (ID-PKS) is an attractive public-key setting. ID-PKS settings not only discard the certificate requirement, but also remove the construction of the public-key infrastructure. For solving the user revocation problem in ID-PKS settings, revocable ID-PKS (RID-PKS) setting has attracted significant attention. Numerous cryptographic schemes based on RID-PKS settings have been proposed. However, under RID-PKS settings, no leakage-resilient signature or encryption scheme is proposed. In this article, we present the first leakage-resilient revocable ID-based signature (LR-RIBS) scheme with cloud revocation authority (CRA) under the continual leakage model. Also, a new adversary model of LR-RIBS schemes with CRA is defined. Under this new adversary model, security analysis is made to demonstrate that our LR-RIBS scheme with CRA is provably secure in the generic bilinear group (GBG) model. Finally, performance analysis is made to demonstrate that our scheme is suitable for mobile devices.