Pub. online:5 Aug 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 1 (2019), pp. 91–116
Abstract
The evolution of Wireless Sensor Networks has led to the development of protocols that must comply with their new restrictions while being efficient in terms of energy consumption and time. We focus on a collision resolution protocol, the so-called Two Cell Sorted (2CS-WSN). We propose three different ways to improve its performance by minimizing the collision resolution time or the energy consumption. After evaluating these proposals and carrying out the comparison with the original protocol, we recommend an improvement to the protocol which reduces the elapsed time by early 8% and the number of retries and conflicts more than 40%.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 4 (2018), pp. 633–650
Abstract
In recent years, Wireless Sensor Networks (WSNs) received great attention because of their important applications in many areas. Consequently, a need for improving their performance and efficiency, especially in energy awareness, is of a great interest. Therefore, in this paper, we proposed a lifetime improvement fixed clustering energy awareness routing protocol for WSNs named Load Balancing Cluster Head (LBCH) protocol. LBCH mainly aims at reducing the energy consumption in the network and balancing the workload over all nodes within the network. A novel method for selecting initial cluster heads (CHs) is proposed. In addition, the network nodes are evenly distributed into clusters to build balanced size clusters. Finally, a novel scheme is proposed to circulate the role of CHs depending on the energy and location information of each node in each cluster. Multihop technique is used to minimize the communication distance between CHs and the base station (BS) thus saving nodes energy. In order to evaluate the performance of LBCH, a thorough simulation has been conducted and the results are compared with other related protocols (i.e. ACBEC-WSNs-CD, Adaptive LEACH-F, LEACH-F, and RRCH). The simulations showed that LBCH overcomes other related protocols for both continuous data and event-based data models at different network densities. LBCH achieved an average improvement in the range of 2–172%, 18–145.5%, 10.18–62%, 63–82.5% over the compared protocols in terms of number of alive nodes, first node died (FND), network throughput, and load balancing, respectively.