Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 2 (2018), pp. 371–397
Abstract
Intuitionistic uncertain linguistic variables (IULVs) are useful to express the qualitative and quantitative recognitions of decision makers. However, after reviewing the previous operational laws on IULVs, we find there are some limitations. To address these issues, we define several new operations on IULVs and give a new ranking method. To improve the utilization of IULVs, this paper defines two Choquet operators: the intuitionistic uncertain linguistic symmetrical Choquet averaging (IULSCA) operator and the intuitionistic uncertain linguistic symmetrical Choquet geometric mean (IULSCGM) operator, which can address the internal correlations among elements. To globally reflect the interactive characteristics of the importance of elements, two generalized Shapley intuitionistic uncertain linguistic symmetrical Choquet operators are presented. Subsequently, a new distance measure is defined, which is then used to build models to ascertain fuzzy measures on decision maker and criteria sets to address the case where the weighting information is partly known. After that, a new procedure to intuitionistic uncertain linguistic group decision making is developed. Finally, a specific example is offered to illustrate the practicality of the new procedure, and the comparison analysis is also made.
Journal:Informatica
Volume 27, Issue 1 (2016), pp. 111–139
Abstract
With respect to multi-attribute decision making under uncertain linguistic environment, a new interval-valued 2-tuple linguistic representation model is introduced. To deal with the situation where the elements in a set are interdependent, several generalized interval-valued 2-tuple linguistic correlated aggregation operators are defined. It is worth pointing out that some interval-valued 2-tuple linguistic operators based on additive measures are special cases of our operators. Meanwhile, several special cases and desirable properties are discussed. Furthermore, models based on the correlation coefficient are constructed, by which the optimal weight vector can be obtained. Moreover, an approach to multi-attribute group decision making with uncertain linguistic information is developed. Finally, an example is selected to show the effectivity and feasibility of the developed procedure.