Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 2 (2018), pp. 303–320
Abstract
The probabilistic linguistic terms set (PLTS) can reflect different importance degrees or weights of all possible linguistic terms (LTs) given by the experts for a specific object. The PROMETHEE II method is an important ranking method which can comprise preferences as well as indifferences, and it has a unique characteristic that can provide different types of preference functions. Based on the advantages of the PLTS and the PROMETHEE II method, in this paper, we extend the PROMETHEE II method to process the probabilistic linguistic information (PLI), and propose the PL-PROMETHEE II method with an improved possibility degree formula which can avoid the weaknesses from the original formula. Then concerning the multi-attribute decision making (MADM) problems with totally unknown weight information, the maximum deviation method is used to get the objective weight vector of the attributes, and net flows of the alternatives from the PROMETHEE II method are used to rank the alternatives. Finally, a numerical example is given to illustrate the feasibility of the proposed method.
Journal:Informatica
Volume 25, Issue 2 (2014), pp. 185–208
Abstract
In this study, we evaluated the effects of the normalization procedures on decision outcomes of a given MADM method. For this aim, using the weights of a number of attributes calculated from FAHP method, we applied TOPSIS method to evaluate the financial performances of 13 Turkish deposit banks. In doing this, we used the most popular four normalization procedures. Our study revealed that vector normalization procedure, which is mostly used in the TOPSIS method by default, generated the most consistent results. Among the linear normalization procedures, max-min and max methods appeared as the possible alternatives to the vector normalization procedure.