Journal:Informatica
Volume 26, Issue 3 (2015), pp. 435–451
Abstract
An effective way for managing and controlling a large number of inventory items or stock keeping units (SKUs) is the inventory classification. Traditional ABC analysis which based on only a single criterion is commonly used for classification of SKUs. However, we should consider inventory classification as a multi-criteria problem in practice. In this study, a new method of Evaluation based on Distance from Average Solution (EDAS) is introduced for multi-criteria inventory classification (MCIC) problems. In the proposed method, we use positive and negative distances from the average solution for appraising alternatives (SKUs). To represent performance of the proposed method in MCIC problems, we use a common example with 47 SKUs. Comparing the results of the proposed method with some existing methods shows the good performance of it in ABC classification. The proposed method can also be used for multi-criteria decision-making (MCDM) problems. A comparative analysis is also made for showing the validity and stability of the proposed method in MCDM problems. We compare the proposed method with VIKOR, TOPSIS, SAW and COPRAS methods using an example. Seven sets of criteria weights and Spearman’s correlation coefficient are used for this analysis. The results show that the proposed method is stable in different weights and well consistent with the other methods.
Journal:Informatica
Volume 24, Issue 2 (2013), pp. 199–217
Abstract
Inventory management is an important part of production planning process for enterprises. Decisions for strategies to determine when and how many to buy or make can be made by classifying the inventory items based on their sorts. In this evaluation, ABC inventory classification is one of the most commonly used approaches. In this study, a fuzzy analytic network process approach was proposed to determine the weights of the criteria and the scores of the inventory items were determined with simple additive weighting by using linguistic terms. Applying fuzzy ANP to a multi-criteria inventory classification problem is the novelty of this study in the related literature. In addition, the application area of the problem which is the management of the engineering vehicles' items in a construction firm is different from the other studies.