Journal:Informatica
Volume 33, Issue 1 (2022), pp. 81–108
Abstract
A proper CNC machine selection problem is an important issue for manufacturing companies under competitive market conditions. The selection of an improper machine tool can cause many problems such as production capabilities and productivity indicators considering time and money industrially and practically. In this paper, a comprehensive solution approach is presented for the CNC machine tool selection problem according to the determined criteria. Seven main and thirteen sub-criteria were determined for the evaluation of the seven alternatives. To purify the selection process from subjectivity, instead of a single decision-maker, the opinions of six different experts on the importance of the criteria were taken and evaluated using the Best-Worst method. According to the evaluations, the order of importance of the main criteria has been determined as cost, productivity, flexibility, and dimensions. After the weighting of the criteria, three different ranking methods (GRA, COPRAS, and MULTIMOORA) were preferred due to the high investment costs of the selected alternatives. The findings obtained by solving the problem of selection of the CNC machine are close to those obtained by past researchers. As a result, using the suggested methodology, effective alternative decision-making solutions are obtained.
Pub. online:10 Mar 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 1 (2021), pp. 145–161
Abstract
The main aim of the article is to propose a new multiple criteria decision-making approach for selecting alternatives, the newly-developed MULTIMOOSRAL approach, which integrates advantages of the three well-known and prominent multiple-criteria decision-making methods: MOOSRA, MOORA, and MULTIMOORA. More specifically, the MULTIMOOSRAL method has been further upgraded with an approach that can be clearly seen in the well-known WASPAS and CoCoSo methods, which rely on the integration of weighted sum and weighted product approaches. In addition to the above approaches, the MULTIMOOSRAL method also integrates a logarithmic approximation approach. The expectation from the development of this method is that the integration of several approaches can provide a much more reliable selection of the most appropriate alternative, which can be very important in cases where the performance of alternatives obtained by using some other method does not differ much. Finally, the ranking of alternatives based on the dominance theory, used in the MOORA and MULTIMOORA methods, is replaced by a new original approach that should allow a much simpler final ranking of alternatives in order to reach a stronger result with five different techniques. The suitability and efficacy of the proposed MULTIMOOSRAL approach are presented through an illustrative case study of the supplier selection.
Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 1 (2019), pp. 135–152
Abstract
The aim of this paper is to make a proposal for a new extension of the MULTIMOORA method extended to deal with bipolar fuzzy sets. Bipolar fuzzy sets are proposed as an extension of classical fuzzy sets in order to enable solving a particular class of decision-making problems. Unlike other extensions of the fuzzy set of theory, bipolar fuzzy sets introduce a positive membership function, which denotes the satisfaction degree of the element x to the property corresponding to the bipolar-valued fuzzy set, and the negative membership function, which denotes the degree of the satisfaction of the element x to some implicit counter-property corresponding to the bipolar-valued fuzzy set. By using single-valued bipolar fuzzy numbers, the MULTIMOORA method can be more efficient for solving some specific problems whose solving requires assessment and prediction. The suitability of the proposed approach is presented through an example.
Pub. online:1 Jan 2017Type:Research ArticleOpen Access
Journal:Informatica
Volume 28, Issue 1 (2017), pp. 181–192
Abstract
The aim of this manuscript is to propose a new extension of the MULTIMOORA method adapted for usage with a neutrosophic set. By using single valued neutrosophic sets, the MULTIMOORA method can be more efficient for solving complex problems whose solving requires assessment and prediction, i.e. those problems associated with inaccurate and unreliable data. The suitability of the proposed approach is presented through an example.
Journal:Informatica
Volume 23, Issue 2 (2012), pp. 173–190
Abstract
This paper aims to extend fuzzy MULTIMOORA with linguistic reasoning and group decision-making (MULTIMOORA-FG). The new method consists of the three parts, namely the fuzzy Ratio System, the fuzzy Utopian Reference Point, and the fuzzy Full Multiplicative Form offering a robust comparison of alternatives against multiple objectives. In addition, MULTIMOORA-FG is designed to deal with triangular fuzzy numbers which, in turn, can resemble linguistic variables. MULTIMOORA-FG is a proper instrument for linguistic reasoning under fuzzy environment. In our study an application of personnel selection illustrates the group decision-making procedure according to MULTIMOORA-FG. Given the uncertainties peculiar of personnel selection, the application of multi-objective decision making (MODM) is required in this area. Fuzzy MULTIMOORA enables to aggregate subjective assessments of the decision-makers and thus offer an opportunity to perform a more robust personnel selection. The committee decided to consider eight qualitative characteristics expressed in linguistic variables. A numerical example exhibited possibilities for improvement of human resources management or any other business decision-making by applying MULTIMOORA-FG.
Journal:Informatica
Volume 23, Issue 1 (2012), pp. 1–25
Abstract
Multi-Objective Optimization takes care of different objectives with the objectives keeping their own units. The internal mechanical solution of a Ratio System, producing dimensionless numbers, is preferred. The ratio system creates the opportunity to use a second approach: a Reference Point Theory, which uses the ratios of the ratio system. This overall theory is called MOORA (Multi-Objective Optimization by Ratio Analysis). The results are still more convincing if a Full Multiplicative Form is added forming MULTIMOORA. The control by three different approaches forms a guaranty for a solution being as non-subjective as possible. MULTIMOORA, tested after robustness, showed positive results.