Journal:Informatica
Volume 24, Issue 4 (2013), pp. 657–675
Abstract
In this paper, a modified version of the discrete wavelet transform (DWT), distinguishing itself with visibly improved space localization properties and noticeably extended potential capabilities, is proposed. The key point of this proposal is the full decorrelation of wavelet coefficients across the lower scales. This proposal can be applied to any DWT of higher orders (Le Gall, Daubechies D4, CDF 9/7, etc.). To open up new areas of practical applicability of the modified DWT, a novel exceptionally fast algorithm for computing the DWT spectra of the selected signal (image) blocks is presented. In parallel, some considerations and experimental results concerning the energy compaction property of the modified DWT are discussed.
Journal:Informatica
Volume 17, Issue 2 (2006), pp. 187–198
Abstract
In this paper, a digital watermarking algorithm for copyright protection based on the concept of embed digital watermark and modifying frequency coefficients in discrete wavelet transform (DWT) domain is presented. We embed the watermark into the detail wavelet coefficients of the original image with the use of a key. This key is randomly generated and is used to select the exact locations in the wavelet domain in which to embed the watermark. The corresponding watermark detection algorithm is presented. A new metric that measure the objective quality of the image based on the detected watermark bit is introduced, which the original unmarked image is not required for watermark extraction. The performance of the proposed watermarking algorithm is robust to variety of signal distortions, such a JPEG, image cropping, geometric transformations and noises.