This paper presents a multiple-criteria choice model, the circular intuitionistic fuzzy (C-IF) ELECTRE, designed to resolve C-IF ambiguities through built-in circular functions. Joint generalized scoring functions establish contrast relationships between C-IF evaluation values, facilitating concordance and discordance analyses for option ranking. The efficacy of C-IF ELECTRE I and II—leveraging tools such as the prioritization Boolean matrix, average outflows and inflows, and overall net flow—is validated through a multi-expert supplier evaluation, with outcomes benchmarked against alternative methods. A comparative analysis explores the impact of parameter variations, underscoring how integrating C-IF sets with ELECTRE enhances decision-making in complex, multifaceted environments.
Pub. online:28 Nov 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 4 (2022), pp. 857–899
Abstract
T-spherical fuzzy (T-SF) sets furnish a constructive and flexible manner to manifest higher-order fuzzy information in realistic decision-making contexts. The objective of this research article is to deliver an original multiple-criteria choice method that utilizes a correlation-focused approach toward computational intelligence in uncertain decision-making activities with T-spherical fuzziness. This study introduces the notion of T-SF data-driven correlation measures that are predicated on two types of the square root function and the maximum function. The purpose of these measures is to exhibit the overall desirability of choice options across all performance criteria using T-SF comprehensive correlation indices within T-SF decision environments. This study executes an application for location selection and demonstrates the effectiveness and suitability of the developed techniques in T-SF uncertain conditions. The comparative analysis and outcomes substantiate the justifiability and the strengths of the propounded methodology in pragmatic situations under T-SF uncertainties.
Pub. online:25 Nov 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 3 (2022), pp. 437–476
Abstract
The theory of T-spherical fuzzy (T-SF) sets possesses remarkable capability to manage intricate uncertain information. The REGIME method is a well-established technique concerning discrete choice analysis. This paper comes up with a multiple-criteria choice analysis approach supported by the REGIME structure for manipulating T-SF uncertainties. This paper constructs new-created measurements such as superiority identifiers and guide indices for relative attractiveness and fittingness, respectively, between T-SF characteristics. This study evolves the T-SF REGIME I and II prioritization procedures for decision support. The application and comparative studies exhibit the effectiveness and favorable features of the propounded T-SF REGIME methodology in real decisions.