The accelerated progress of aquaponics offers a promising remedy for food production in arid regions, where success heavily hinges on sustaining optimal water quality parameters of aquaponic system. However, managing water parameters in large-scale aquaponic farms, given their complex and interconnected nature, poses significant challenges. Various control approaches have been introduced over the years, but selecting the most suitable one is vital for ensuring stability, efficiency, and high productivity. In this study, a novel fuzzy-based Multiple Criteria Decision Making (MCDM) methodology is proposed, which combines the Intuitionistic Fuzzy Ordinary Priority Approach (OPA-IF) with the Neutrosophic-TOPSIS strategy. This methodology aims to identify the most appropriate control strategy for large-scale aquaponic systems. The OPA-IF analysis reveals that the ‘Capability to Handle MIMO Systems’ is the most critical criterion, leading to the conclusion, through the Neutrosophic-TOPSIS approach, that ‘Model Predictive Control (MPC)’ is the optimal choice for managing large-scale aquaponic systems. Additionally, a comparative analysis using the BWM-Neutrosophic-TOPSIS strategy further supports the findings of the proposed method. The results are further validated through statistical analysis and sensitivity testing, ensuring their robustness and reliability. Overall, this study not only contributes to the scientific understanding of control strategies in aquaponics but also offers practical insights for farmers and aquaponic practitioners. The ultimate goal is to enhance the sustainability and efficiency of aquaponic systems, promoting their adoption and long-term success in sustainable food production.
Pub. online:19 Dec 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 2 (2023), pp. 223–248
Abstract
In this study, Intuitionistic Fuzzy Consistency Method (IF-FUCOM) and Grey Relation Analysis (GRA) were combined to assess the effects of Bacillus subtilis bacteria on concrete properties, as well as to determine the optimal bacteria concentration and curing day. Three different concentrations of bacteria were added to the mortar mixes, like 103, 105, and 107 cells/ml of water. Mortar samples were left to cure for 7 days, 14 days, and 28 days to evaluate compressive strength, water absorption, crack healing. According to the proposed algorithm, 105 bacteria are the optimal concentration, while 28 days is the ideal curing time.