Journal:Informatica
Volume 34, Issue 4 (2023), pp. 713–742
Abstract
In this paper, we introduce the concept of circular Pythagorean fuzzy set (value) (C-PFS(V)) as a new generalization of both circular intuitionistic fuzzy sets (C-IFSs) proposed by Atannassov and Pythagorean fuzzy sets (PFSs) proposed by Yager. A circular Pythagorean fuzzy set is represented by a circle that represents the membership degree and the non-membership degree and whose centre consists of non-negative real numbers μ and ν with the condition ${\mu ^{2}}+{\nu ^{2}}\leqslant 1$. A C-PFS models the fuzziness of the uncertain information more properly thanks to its structure that allows modelling the information with points of a circle of a certain centre and a radius. Therefore, a C-PFS lets decision makers to evaluate objects in a larger and more flexible region and thus more sensitive decisions can be made. After defining the concept of C-PFS we define some fundamental set operations between C-PFSs and propose some algebraic operations between C-PFVs via general triangular norms and triangular conorms. By utilizing these algebraic operations, we introduce some weighted aggregation operators to transform input values represented by C-PFVs to a single output value. Then to determine the degree of similarity between C-PFVs we define a cosine similarity measure based on radius. Furthermore, we develop a method to transform a collection of Pythagorean fuzzy values to a C-PFS. Finally, a method is given to solve multi-criteria decision making problems in circular Pythagorean fuzzy environment and the proposed method is practiced to a problem about selecting the best photovoltaic cell from the literature. We also study the comparison analysis and time complexity of the proposed method.
Journal:Informatica
Volume 32, Issue 4 (2021), pp. 849–864
Abstract
There exist various types of similarity measures for intuitionistic fuzzy sets in the literature. However, in many studies the interactions among the elements are ignored in the construction of the similarity measure. This paper presents a cosine similarity measure for intuitionistic fuzzy sets by using a Choquet integral model in which the interactions between elements are considered. The proposed similarity measure is applied to some pattern recognition problems and the results are compared with some existing results to demonstrate the effectiveness of this new similarity measure.