Cited by 34
Ischemic Stroke Segmentation on CT Images Using Joint Features

2006 International Biennial Baltic Electronics Conference
A. Usinskas, R. Gleizniene
Conference  (2006), p. 1
2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
M. Chawla, S. Sharma, J. Sivaswamy, L.T. Kishore
Conference  (2009), p. 3581
2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)
Mehdi Sajjadi, Rassoul Amirfattahi, Mohammad Reza Ahmadzadeh, Mohammad Ali Saghafi
Conference  (2011), p. 384
2015 IEEE 9th International Symposium on Intelligent Signal Processing (WISP) Proceedings
Elmira Hajimani, M. G. Ruano, A. E. Ruano
Conference  (2015), p. 1
2016 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE)
M.G. Ruano, E. Hajimani, A. E. Ruano
Conference  (2016), p. 1
2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)
S. Manikandan, Anitha. G, Josiah Samuel Raj. J
Conference  (2023), p. 1
A Quantitative Method Using Head Noncontrast CT Scans to Detect Hyperacute Nonvisible Ischemic Changes in Patients With Stroke
Ryszard S. Gomolka, Robert M. Chrzan, Andrzej Urbanik, Wieslaw L. Nowinski
Journal  Journal of Neuroimaging Volume 26, Issue 6 (2016), p. 581
A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier
A. Padma Nanthagopal, R. Sukanesh Rajamony
Journal  Journal of Medical Engineering & Technology Volume 36, Issue 5 (2012), p. 271
Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks
Albert Clèrigues, Sergi Valverde, Jose Bernal, Jordi Freixenet, Arnau Oliver, Xavier Lladó
Journal  Computers in Biology and Medicine Volume 115 (2019), p. 103487
An intelligent support system for automatic detection of cerebral vascular accidents from brain CT images
Elmira Hajimani, M.G. Ruano, A.E. Ruano
Journal  Computer Methods and Programs in Biomedicine Volume 146 (2017), p. 109
Application of Machine Learning Techniques for Characterization of Ischemic Stroke with MRI Images: A Review
Asit Subudhi, Pratyusa Dash, Manoranjan Mohapatra, Ru-San Tan, U. Rajendra Acharya, Sukanta Sabut
Journal  Diagnostics Volume 12, Issue 10 (2022), p. 2535
Automated Cerebral Infarct Detection on Computed Tomography Images Based on Deep Learning
Syu-Jyun Peng, Yu-Wei Chen, Jing-Yu Yang, Kuo-Wei Wang, Jang-Zern Tsai
Journal  Biomedicines Volume 10, Issue 1 (2022), p. 122
Automated delineation of stroke lesions using brain CT images
Céline R. Gillebert, Glyn W. Humphreys, Dante Mantini
Journal  NeuroImage: Clinical Volume 4 (2014), p. 540
Automated emergency paramedical response system
Mashrin Srivastava, Saumya Suvarna, Apoorva Srivastava, S. Bharathiraja
Journal  Health Information Science and Systems Volume 6, Issue 1 (2018)
Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs
Yasheng Chen, Rajat Dhar, Laura Heitsch, Andria Ford, Israel Fernandez-Cadenas, Caty Carrera, Joan Montaner, Weili Lin, Dinggang Shen, Hongyu An, Jin-Moo Lee
Journal  NeuroImage: Clinical Volume 12 (2016), p. 673
Automated stroke lesion segmentation in non-contrast CT scans using dense multi-path contextual generative adversarial network
Hulin Kuang, Bijoy K Menon, Wu Qiu
Journal  Physics in Medicine & Biology Volume 65, Issue 21 (2020), p. 215013
Automatic Detection and Classification of Ischemic Stroke Using K-Means Clustering and Texture Features
N. Hema Rajini, R. Bhavani
Book  Advances in Computational Intelligence and Robotics (Emerging Technologies in Intelligent Applications for Image and Video Processing) (2016), p. 441
Combination of hand-crafted and unsupervised learned features for ischemic stroke lesion detection from Magnetic Resonance Images
Praveen Gurunath Bharathi, Anita Agrawal, Ponraj Sundaram, Sanjay Sardesai
Journal  Biocybernetics and Biomedical Engineering Volume 39, Issue 2 (2019), p. 410
Computer aided detection and diagnosis methodology for brain stroke using adaptive neuro fuzzy inference system classifier
Selladurai Anbumozhi
Journal  International Journal of Imaging Systems and Technology Volume 30, Issue 1 (2020), p. 196
Computer aided detection of ischemic stroke using segmentation and texture features
N. Hema Rajini, R. Bhavani
Journal  Measurement Volume 46, Issue 6 (2013), p. 1865
Computer-aided detection and characterization of stroke lesion – a short review on the current state-of-the art methods
R. Karthik, R. Menaka
Journal  The Imaging Science Journal Volume 66, Issue 1 (2018), p. 1
Context-Aware Convolutional Neural Networks for Stroke Sign Detection in Non-contrast CT Scans
Aneta Lisowska, Alison O’Neil, Vismantas Dilys, Matthew Daykin, Erin Beveridge, Keith Muir, Stephen Mclaughlin, Ian Poole
Book  Communications in Computer and Information Science (Medical Image Understanding and Analysis) Volume 723 (2017), p. 494
Development of a Graphical User Interface Training System for Early Infarct Detection
Chung Sheng Ee, Fung Fung Ting, Kok Swee Sim, Chih Ping Tso
Journal  International Journal of Information and Electronics Engineering (2015), p. 54
Efficient multi-kernel DCNN with pixel dropout for stroke MRI segmentation
Liangliang Liu, Fang-Xiang Wu, Jianxin Wang
Journal  Neurocomputing Volume 350 (2019), p. 117
Feature Ranking of Spatial Domain Features for Efficient Characterization of Stroke Lesions
Anish Mukherjee, Abhishek Kanaujia, R. Karthik
Book  Lecture Notes in Electrical Engineering (Computational Signal Processing and Analysis) Volume 490 (2018), p. 149
Identification of invisible ischemic stroke in noncontrast CT based on novel two‐stage convolutional neural network model
Guoqing Wu, Xi Chen, Jixian Lin, Yuanyuan Wang, Jinhua Yu
Journal  Medical Physics Volume 48, Issue 3 (2021), p. 1262
Ischemic Stroke Detection System with a Computer-Aided Diagnostic Ability Using an Unsupervised Feature Perception Enhancement Method
Yeu-Sheng Tyan, Ming-Chi Wu, Chiun-Li Chin, Yu-Liang Kuo, Ming-Sian Lee, Hao-Yan Chang
Journal  International Journal of Biomedical Imaging Volume 2014 (2014), p. 1
Ischemic infarct detection, localization, and segmentation in noncontrast CT human brain scans: review of automated methods
Wieslaw L. Nowinski, Jerzy Walecki, Gabriela Półtorak-Szymczak, Katarzyna Sklinda, Bartosz Mruk
Journal  PeerJ Volume 8 (2020), p. e10444
Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal
Islem Rekik, Stéphanie Allassonnière, Trevor K. Carpenter, Joanna M. Wardlaw
Journal  NeuroImage: Clinical Volume 1, Issue 1 (2012), p. 164
Recovery of CT stroke hypodensity – An adaptive variational approach
Artur Przelaskowski
Journal  Computerized Medical Imaging and Graphics Volume 46 (2015), p. 131
Segmenting Hemorrhagic and Ischemic Infarct Simultaneously From Follow-Up Non-Contrast CT Images in Patients With Acute Ischemic Stroke
Hulin Kuang, Bijoy K. Menon, Wu Qiu
Journal  IEEE Access Volume 7 (2019), p. 39842
Semi‐automated infarct segmentation from follow‐up noncontrast CT scans in patients with acute ischemic stroke
Hulin Kuang, Bijoy K. Menon, Wu Qiu
Journal  Medical Physics Volume 46, Issue 9 (2019), p. 4037
Separability of Acute Cerebral Infarction Lesions in CT Based Radiomics: Toward Artificial Intelligence‐Assisted Diagnosis
Yun Guan, Peng Wang, Qi Wang, Peihao Li, Jianchao Zeng, Pinle Qin, Yanfeng Meng, Zhiguo Zhou
Journal  BioMed Research International Volume 2020, Issue 1 (2020)
Taxonomy of Acute Stroke: Imaging, Processing, and Treatment
Wieslaw L. Nowinski
Journal  Diagnostics Volume 14, Issue 10 (2024), p. 1057