Journal:Informatica
Volume 16, Issue 3 (2005), pp. 333–346
Abstract
In this paper, a reliable information hiding scheme based on support vector machine and error correcting codes is proposed. To extract the hidden information bits from a possibly tampered watermarked image with a lower error probability, information hiding is modeled as a digital communication problem, and both the good generalization ability of support vector machine and the error correction code BCH are applied. Due to the good learning ability of support vector machine, it can learn the relationship between the hidden information and corresponding watermarked image; when the watermarked image is attacked by some intentional or unintentional attacks, the trained support vector machine can recover the right hidden information bits. The reliability of the proposed scheme has been tested under different attacks. The experimental results show that the embedded information bits are perceptually transparent and can successfully resist common image processing, jitter attack, and geometrical distortions. When the host image is heavily distorted, the hidden information can also be extracted recognizably, while most of existing methods are defeated. We expect this approach provide an alternative way for reliable information hiding by applying machine learning technologies.
Journal:Informatica
Volume 13, Issue 1 (2002), pp. 37–46
Abstract
The isolated word speech recognition system based on dynamic time warping (DTW) has been developed. Speaker adaptation is performed using speaker recognition techniques. Vector quantization is used to create reference templates for speaker recognition. Linear predictive coding (LPC) parameters are used as features for recognition. Performance is evaluated using 12 words of Lithuanian language pronounced ten times by ten speakers.
Journal:Informatica
Volume 7, Issue 4 (1996), pp. 495–516
Abstract
An analytical review of recent publications in the area of digital speech signal processing is presented. The aim of the given paper is the analysis of these publications, where Artificial Neural Networks (ANNs) were successfully employed. Numerous methods of ANNs employment are discussed due to identify when and why they are reliable alternative to the conventional adaptive signal processing techniques.
Journal:Informatica
Volume 7, Issue 4 (1996), pp. 469–484
Abstract
The problem of speaker identification is investigated. Basic segments – pseudostationary intervals of voiced sounds are used for identification. The identification is carried out, comparing average distances between an investigative and comparatives. Coefficients of the linear prediction model (LPC) of a vocal tract, cepstral coefficients and LPC coefficients of an excitation signal are used for identification as features. Three speaker identification methods are presented. Experimental investigation of their performance is discussed.
Journal:Informatica
Volume 6, Issue 2 (1995), pp. 167–180
Abstract
The use of vector quantization for speaker identification is investigated. This method differs from the known methods in that the number of centroids is not doubled but increases by 1 at every step. This enables us to obtain identification results at any number of centroids. This method is compared experimentally with the method (Lipeika and Lipeikienė, 1993a, 1993b), where feature vectors of investigative and comparative speakers are compared directly.