Pub. online:5 Aug 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 16, Issue 1 (2005), pp. 131–144
Abstract
The aim of the given paper is the development of an approach for parametric identification of Wiener systems with piecewise linear nonlinearities, i.e., when the linear part with unknown parameters is followed by a saturation-like function with unknown slopes. It is shown here that by a simple data reordering and by a following data partition the problem of identification of a nonlinear Wiener system could be reduced to a linear parametric estimation problem. Afterwards, estimates of the unknown parameters of linear regression models are calculated by processing respective particles of input-output data. A technique based on ordinary least squares (LS) is proposed here for the estimation of parameters of linear and nonlinear parts of the Wiener system, including the unknown threshold of piecewise nonlinearity, too. The results of numerical simulation and identification obtained by processing observations of input-output signals of a discrete-time Wiener system with a piecewise nonlinearity by computer are given.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 2 (2018), pp. 233–249
Abstract
The new nonlocal delayed feedback controller is used to control the production of drugs in a simple bioreactor. This bioreactor is based on the enzymatic conversion of substrate into the required product. The dynamics of this device is described by a system of two nonstationary nonlinear diffusion-reaction equations. The control loop defines the changes of the substrate concentration delivered into the bioreactor at the external boundary of the bioreactor depending on the difference of measurements of the produced drug delivered into the body and the flux of the drug prescribed by a doctor in accordance with the therapeutic protocol. The system of PDEs is solved by using the finite difference method, the control loop parameters are defined from the analysis of stationary linearized equations. The stability of the algorithm for the inverse boundary condition is investigated. Results of computational experiments are presented and analysed.
Journal:Informatica
Volume 17, Issue 1 (2006), pp. 55–68
Abstract
The aim of the given paper is the development of an approach for parametric identification of Hammerstein systems with piecewise linear nonlinearities, i.e., when the saturation-like function with unknown slopes is followed by a linear part with unknown parameters. It is shown here that by a simple input data rearrangement and by a following data partition the problem of identification of a nonlinear Hammerstein system could be reduced to the linear parametric estimation problem. Afterwards, estimates of the unknown parameters of linear regression models are calculated by processing respective particles of input-output data. A technique based on ordinary least squares is proposed here for the estimation of parameters of linear and nonlinear parts of the Hammerstein system, including the unknown threshold of the piecewise nonlinearity, too. The results of numerical simulation and identification obtained by processing observations of input-output signals of a discrete-time Hammerstein system with a piecewise nonlinearity with positive slopes by computer are given.
Journal:Informatica
Volume 4, Issues 1-2 (1993), pp. 126–139
Abstract
This paper is devoted to the investigation of the investigation of the convergence of iterative methods for solving boundary value problems with discontinuous coefficients. The dependence of the rate of convergence on the size of the discontinuity of coefficients is analyzed for three popular general iterative methods. A new criterion on the applicability of such methods is proposed and investigated. The efficiency of this criterion is demonstrated for a model problem.
Journal:Informatica
Volume 1, Issue 1 (1990), pp. 3–19
Abstract
This paper is devoted to the application of adaptable difference schemes for the simulation of propagation and interaction of focused laser beams. New effective processes for the solution of stationary nonlinear optics problems are proposed. Simulation results on real experiment data show the advantages of such schemes and iteration processes.