1 Introduction to Open Set Problem
2 Related Work
3 Double Probability Model
3.1 Theoretical Model
3.2 Double Smoothing
4 Image Classification
5 New Goodness Indicators for Classification in Open Set Problem
6 Experimental Results
6.1 Experimental Environment
Table 1
Name | Number of known classes | Unknown set |
Airplanes5 | 5 | airplanes |
Airplanes10 | 10 | airplanes |
Airplanes20 | 20 | airplanes |
Faces5 | 5 | faces + faces easy |
Faces10 | 10 | faces + faces easy |
Faces20 | 20 | faces + faces easy |
6.2 Evaluation of Double Probability Model
Fig. 1
Table 2
% | Airplanes5 | Faces5 | ||||||||||
Without DPM | With DPM | Without DPM | With DPM | |||||||||
AVG | Q1 | Q3 | AVG | Q1 | Q3 | AVG | Q1 | Q3 | AVG | Q1 | Q3 | |
0 | 0.547 | 0.419 | 0.634 | 0.647 | 0.557 | 0.720 | 0.531 | 0.398 | 0.630 | 0.730 | 0.638 | 0.807 |
5 | 0.517 | 0.396 | 0.601 | 0.639 | 0.547 | 0.720 | 0.502 | 0.376 | 0.596 | 0.718 | 0.620 | 0.792 |
10 | 0.490 | 0.377 | 0.569 | 0.629 | 0.534 | 0.716 | 0.475 | 0.357 | 0.567 | 0.707 | 0.587 | 0.792 |
15 | 0.463 | 0.355 | 0.536 | 0.619 | 0.523 | 0.716 | 0.449 | 0.336 | 0.534 | 0.701 | 0.564 | 0.792 |
20 | 0.436 | 0.334 | 0.505 | 0.610 | 0.502 | 0.716 | 0.423 | 0.318 | 0.502 | 0.686 | 0.530 | 0.792 |
25 | 0.409 | 0.313 | 0.474 | 0.601 | 0.485 | 0.716 | 0.397 | 0.297 | 0.472 | 0.672 | 0.518 | 0.792 |
30 | 0.382 | 0.292 | 0.444 | 0.592 | 0.464 | 0.716 | 0.370 | 0.277 | 0.440 | 0.657 | 0.494 | 0.792 |
35 | 0.354 | 0.272 | 0.412 | 0.582 | 0.437 | 0.716 | 0.344 | 0.258 | 0.408 | 0.643 | 0.463 | 0.792 |
40 | 0.327 | 0.251 | 0.380 | 0.570 | 0.412 | 0.716 | 0.318 | 0.238 | 0.378 | 0.625 | 0.427 | 0.792 |
45 | 0.300 | 0.230 | 0.348 | 0.558 | 0.382 | 0.715 | 0.291 | 0.218 | 0.346 | 0.610 | 0.389 | 0.792 |
50 | 0.273 | 0.210 | 0.317 | 0.543 | 0.361 | 0.702 | 0.265 | 0.199 | 0.315 | 0.593 | 0.344 | 0.792 |
Table 3
% | Airplanes10 | Faces10 | ||||||||||
Without DPM | With DPM | Without DPM | With DPM | |||||||||
AVG | Q1 | Q3 | AVG | Q1 | Q3 | AVG | Q1 | Q3 | AVG | Q1 | Q3 | |
0 | 0.635 | 0.561 | 0.717 | 0.676 | 0.609 | 0.727 | 0.643 | 0.601 | 0.734 | 0.745 | 0.654 | 0.851 |
5 | 0.602 | 0.532 | 0.679 | 0.658 | 0.607 | 0.709 | 0.609 | 0.570 | 0.695 | 0.723 | 0.620 | 0.830 |
10 | 0.571 | 0.504 | 0.645 | 0.642 | 0.590 | 0.686 | 0.578 | 0.539 | 0.659 | 0.704 | 0.604 | 0.797 |
15 | 0.539 | 0.477 | 0.608 | 0.620 | 0.556 | 0.668 | 0.545 | 0.509 | 0.623 | 0.686 | 0.588 | 0.767 |
20 | 0.508 | 0.448 | 0.573 | 0.602 | 0.524 | 0.643 | 0.514 | 0.480 | 0.587 | 0.663 | 0.573 | 0.758 |
25 | 0.476 | 0.420 | 0.537 | 0.580 | 0.503 | 0.606 | 0.482 | 0.450 | 0.550 | 0.642 | 0.567 | 0.734 |
30 | 0.444 | 0.393 | 0.501 | 0.560 | 0.491 | 0.575 | 0.449 | 0.420 | 0.513 | 0.624 | 0.528 | 0.734 |
35 | 0.412 | 0.365 | 0.465 | 0.536 | 0.469 | 0.559 | 0.417 | 0.390 | 0.476 | 0.604 | 0.494 | 0.711 |
40 | 0.381 | 0.337 | 0.430 | 0.514 | 0.441 | 0.544 | 0.385 | 0.361 | 0.440 | 0.577 | 0.459 | 0.676 |
45 | 0.349 | 0.309 | 0.394 | 0.490 | 0.414 | 0.521 | 0.353 | 0.330 | 0.404 | 0.551 | 0.414 | 0.655 |
50 | 0.318 | 0.281 | 0.359 | 0.463 | 0.382 | 0.485 | 0.321 | 0.301 | 0.367 | 0.527 | 0.381 | 0.634 |
Table 4
% | Airplanes20 | Faces20 | ||||||||||
Without DPM | With DPM | Without DPM | With DPM | |||||||||
AVG | Q1 | Q3 | AVG | Q1 | Q3 | AVG | Q1 | Q3 | AVG | Q1 | Q3 | |
0 | 0.671 | 0.607 | 0.701 | 0.705 | 0.644 | 0.757 | 0.668 | 0.604 | 0.710 | 0.718 | 0.652 | 0.763 |
5 | 0.637 | 0.576 | 0.666 | 0.675 | 0.614 | 0.753 | 0.634 | 0.573 | 0.674 | 0.700 | 0.640 | 0.752 |
10 | 0.604 | 0.545 | 0.630 | 0.648 | 0.589 | 0.724 | 0.601 | 0.543 | 0.639 | 0.682 | 0.635 | 0.744 |
15 | 0.570 | 0.516 | 0.596 | 0.618 | 0.561 | 0.688 | 0.567 | 0.513 | 0.603 | 0.663 | 0.622 | 0.733 |
20 | 0.537 | 0.485 | 0.560 | 0.589 | 0.533 | 0.654 | 0.534 | 0.483 | 0.568 | 0.645 | 0.594 | 0.723 |
25 | 0.503 | 0.455 | 0.526 | 0.558 | 0.503 | 0.616 | 0.501 | 0.453 | 0.532 | 0.625 | 0.570 | 0.714 |
30 | 0.470 | 0.425 | 0.491 | 0.526 | 0.471 | 0.590 | 0.467 | 0.422 | 0.497 | 0.605 | 0.542 | 0.704 |
35 | 0.436 | 0.394 | 0.456 | 0.493 | 0.439 | 0.550 | 0.434 | 0.392 | 0.462 | 0.583 | 0.508 | 0.691 |
40 | 0.403 | 0.364 | 0.421 | 0.460 | 0.407 | 0.513 | 0.401 | 0.362 | 0.426 | 0.560 | 0.472 | 0.678 |
45 | 0.369 | 0.334 | 0.386 | 0.428 | 0.378 | 0.478 | 0.367 | 0.332 | 0.390 | 0.537 | 0.435 | 0.664 |
50 | 0.336 | 0.303 | 0.351 | 0.395 | 0.347 | 0.434 | 0.334 | 0.302 | 0.355 | 0.509 | 0.400 | 0.640 |
Table 5
% | ${\mathit{Accuracy}_{O}}$ | ${P_{\mathit{filter}}}$ | ||||||||||
A5 | F5 | A10 | F10 | A20 | F20 | A5 | F5 | A10 | F10 | A20 | F20 | |
0 | 0.547 | 0.531 | 0.635 | 0.643 | 0.671 | 0.668 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
5 | 0.562 | 0.545 | 0.632 | 0.640 | 0.649 | 0.663 | 0.108 | 0.069 | 0.126 | 0.076 | 0.129 | 0.143 |
10 | 0.573 | 0.559 | 0.632 | 0.641 | 0.630 | 0.660 | 0.186 | 0.132 | 0.235 | 0.151 | 0.268 | 0.263 |
15 | 0.586 | 0.576 | 0.627 | 0.642 | 0.609 | 0.655 | 0.259 | 0.198 | 0.314 | 0.222 | 0.365 | 0.357 |
20 | 0.598 | 0.587 | 0.625 | 0.640 | 0.589 | 0.652 | 0.325 | 0.251 | 0.392 | 0.284 | 0.445 | 0.445 |
25 | 0.612 | 0.602 | 0.622 | 0.641 | 0.568 | 0.648 | 0.389 | 0.308 | 0.460 | 0.346 | 0.511 | 0.516 |
30 | 0.626 | 0.615 | 0.620 | 0.644 | 0.545 | 0.645 | 0.447 | 0.364 | 0.523 | 0.409 | 0.562 | 0.578 |
35 | 0.640 | 0.629 | 0.618 | 0.648 | 0.524 | 0.641 | 0.500 | 0.417 | 0.579 | 0.467 | 0.612 | 0.629 |
40 | 0.652 | 0.640 | 0.616 | 0.646 | 0.501 | 0.638 | 0.547 | 0.466 | 0.627 | 0.517 | 0.654 | 0.677 |
45 | 0.664 | 0.654 | 0.614 | 0.646 | 0.482 | 0.635 | 0.590 | 0.517 | 0.674 | 0.564 | 0.701 | 0.719 |
50 | 0.675 | 0.663 | 0.612 | 0.647 | 0.461 | 0.630 | 0.632 | 0.563 | 0.715 | 0.610 | 0.739 | 0.757 |
6.3 Comparison with the Weibull-Calibrated SVM (W-SVM)
Fig. 2
Fig. 3
Table 6
% | ${\mathit{Accuracy}_{O}}$ | ${P_{\mathit{filter}}}$ | Method | ||||||||||
A5 | F5 | A10 | F10 | A20 | F20 | A5 | F5 | A10 | F10 | A20 | F20 | ||
0 | 0.547 | 0.531 | 0.635 | 0.643 | 0.671 | 0.668 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | DPM |
0.495 | 0.420 | 0.563 | 0.486 | 0.513 | 0.505 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | W-SVM | |
5 | 0.562 | 0.545 | 0.632 | 0.640 | 0.649 | 0.663 | 0.108 | 0.069 | 0.126 | 0.076 | 0.129 | 0.143 | DPM |
0.499 | 0.432 | 0.554 | 0.480 | 0.500 | 0.502 | 0.088 | 0.073 | 0.095 | 0.080 | 0.063 | 0.126 | W-SVM | |
10 | 0.573 | 0.559 | 0.632 | 0.641 | 0.630 | 0.660 | 0.186 | 0.132 | 0.235 | 0.151 | 0.268 | 0.263 | DPM |
0.502 | 0.444 | 0.546 | 0.475 | 0.488 | 0.499 | 0.162 | 0.139 | 0.170 | 0.147 | 0.121 | 0.228 | W-SVM | |
15 | 0.586 | 0.576 | 0.627 | 0.642 | 0.609 | 0.655 | 0.259 | 0.198 | 0.314 | 0.222 | 0.365 | 0.357 | DPM |
0.505 | 0.455 | 0.539 | 0.469 | 0.476 | 0.497 | 0.230 | 0.199 | 0.236 | 0.210 | 0.175 | 0.315 | W-SVM | |
20 | 0.598 | 0.587 | 0.625 | 0.640 | 0.589 | 0.652 | 0.325 | 0.251 | 0.392 | 0.284 | 0.445 | 0.445 | DPM |
0.509 | 0.465 | 0.531 | 0.464 | 0.464 | 0.494 | 0.295 | 0.254 | 0.295 | 0.266 | 0.227 | 0.390 | W-SVM | |
25 | 0.612 | 0.602 | 0.622 | 0.641 | 0.568 | 0.648 | 0.389 | 0.308 | 0.460 | 0.346 | 0.511 | 0.516 | DPM |
0.513 | 0.476 | 0.523 | 0.458 | 0.451 | 0.491 | 0.355 | 0.310 | 0.349 | 0.318 | 0.277 | 0.457 | W-SVM | |
30 | 0.626 | 0.615 | 0.620 | 0.644 | 0.545 | 0.645 | 0.447 | 0.364 | 0.523 | 0.409 | 0.562 | 0.578 | DPM |
0.516 | 0.487 | 0.515 | 0.452 | 0.439 | 0.488 | 0.412 | 0.362 | 0.399 | 0.368 | 0.325 | 0.516 | W-SVM | |
35 | 0.640 | 0.629 | 0.618 | 0.648 | 0.524 | 0.641 | 0.500 | 0.417 | 0.579 | 0.467 | 0.612 | 0.629 | DPM |
0.520 | 0.498 | 0.507 | 0.447 | 0.427 | 0.485 | 0.465 | 0.413 | 0.447 | 0.415 | 0.372 | 0.569 | W-SVM | |
40 | 0.652 | 0.640 | 0.616 | 0.646 | 0.501 | 0.638 | 0.547 | 0.466 | 0.627 | 0.517 | 0.654 | 0.677 | DPM |
0.523 | 0.509 | 0.499 | 0.442 | 0.415 | 0.483 | 0.515 | 0.462 | 0.491 | 0.458 | 0.418 | 0.617 | W-SVM | |
45 | 0.664 | 0.654 | 0.614 | 0.646 | 0.482 | 0.635 | 0.590 | 0.517 | 0.674 | 0.564 | 0.701 | 0.719 | DPM |
0.527 | 0.520 | 0.491 | 0.436 | 0.402 | 0.480 | 0.564 | 0.509 | 0.535 | 0.501 | 0.464 | 0.661 | W-SVM | |
50 | 0.675 | 0.663 | 0.612 | 0.647 | 0.461 | 0.630 | 0.632 | 0.563 | 0.715 | 0.610 | 0.739 | 0.757 | DPM |
0.530 | 0.531 | 0.483 | 0.430 | 0.390 | 0.477 | 0.608 | 0.554 | 0.576 | 0.541 | 0.509 | 0.702 | W-SVM |