1 Introduction
2 Several Concepts
2.1 Fuzzy Measures and the Choquet Integral
Definition 1 (See Sugeno, 1974).
Definition 2 (See Sugeno, 1974).
(1)
\[ {g_{\lambda }}(A\cup B)={g_{\lambda }}(A)+{g_{\lambda }}(B)+\lambda {g_{\lambda }}(A){g_{\lambda }}(B),\]Remark 1.
Definition 3 (See Grabisch, 1996).
(4)
\[ {C_{\mu }}\big(f({x_{(1)}}),f({x_{(2)}}),\dots ,f({x_{(n)}})\big)={\sum \limits_{i=1}^{n}}f({x_{(i)}})\big(\mu ({A_{(i)}})-\mu ({A_{(i+1)}})\big),\]2.2 The Concept of IVIHFEs
Definition 4 (See Zhang, 2013).
Remark 2.
-
(i) ${\tilde{h}_{1}}\oplus {\tilde{h}_{2}}=\{{\tilde{\alpha }_{i}}\oplus {\tilde{\alpha }_{j}}|{\tilde{\alpha }_{i}}\in {\tilde{h}_{1}},{\tilde{\alpha }_{j}}\in {\tilde{h}_{2}}\}=\{([{\mu _{l}^{i}}+{\mu _{l}^{j}}-{\mu _{l}^{i}}{\mu _{l}^{j}},{\mu _{u}^{i}}+{\mu _{u}^{j}}-{\mu _{u}^{i}}{\mu _{u}^{j}}],[{v_{l}^{i}}{v_{l}^{j}},{v_{u}^{i}}{v_{u}^{j}}])|{\tilde{\alpha }_{i}}\in {\tilde{h}_{1}},{\tilde{\alpha }_{j}}\in {\tilde{h}_{2}}\}$;
-
(ii) ${\tilde{h}_{1}}\otimes {\tilde{h}_{2}}=\{{\tilde{\alpha }_{i}}\otimes {\tilde{\alpha }_{j}}|{\tilde{\alpha }_{i}}\in {\tilde{h}_{1}},{\tilde{\alpha }_{j}}\in {\tilde{h}_{2}}\}=\{([{\mu _{l}^{i}}{\mu _{l}^{j}},{\mu _{u}^{i}}{\mu _{u}^{j}}],[{v_{l}^{i}}+{v_{l}^{j}}-{v_{l}^{i}}{v_{l}^{j}},{v_{u}^{i}}+{v_{u}^{j}}-{v_{u}^{i}}{v_{u}^{j}}])|{\tilde{\alpha }_{i}}\in {\tilde{h}_{1}},{\tilde{\alpha }_{j}}\in {\tilde{h}_{2}}\}$;
-
(iii) $\lambda \tilde{h}=\{\lambda \tilde{\alpha }|\tilde{\alpha }\in \tilde{h}\}=\{([1-{(1-{\mu _{l}})^{\lambda }},1-{(1-{\mu _{u}})^{\lambda }}],[{v_{l}^{\lambda }},{v_{u}^{\lambda }}])|\tilde{\alpha }\in \tilde{h}\}$, $\lambda \in [0,1]$;
-
(iv) ${\tilde{h}^{\lambda }}=\{{\tilde{\alpha }^{\lambda }}|\tilde{\alpha }\in \tilde{h}\}=\{([{\mu _{l}^{\lambda }},{\mu _{u}^{\lambda }}],[1-{(1-{v_{l}})^{\lambda }},1-{(1-{v_{u}})^{\lambda }}])|\tilde{\alpha }\in \tilde{h}\}$, $\lambda \in [0,1]$.
(5)
\[ s(\tilde{h})=\frac{1}{\mathrm{\# }\tilde{h}}\sum \limits_{\tilde{\alpha }\in \tilde{h}}\frac{{\mu _{l}}+{\mu _{u}}-{v_{l}}-{v_{u}}}{2}\](6)
\[ a(\tilde{h})=\frac{1}{\mathrm{\# }\tilde{h}}\sum \limits_{\tilde{\alpha }\in \tilde{h}}\frac{{\mu _{l}}+{\mu _{u}}+{v_{l}}+{v_{u}}}{2}\]2.3 Several Interval-Valued Intuitionistic Hesitant Fuzzy Aggregation Operators
Definition 5 (See Zhang, 2013).
-
(i) the interval-valued intuitionistic hesitant fuzzy hybrid averaging (IVIHFHA) operator is defined as follows:
(7)
\[ {\mathrm{IVIHFHA}_{w,\omega }}({\tilde{h}_{1}},{\tilde{h}_{2}},\dots ,{\tilde{h}_{n}})={\underset{i=1}{\overset{n}{\bigoplus }}}{w_{i}}{\tilde{h}^{\prime }_{\sigma (i)}}\] -
(ii) the interval-valued intuitionistic hesitant fuzzy hybrid geometric (IVIHFHG) operator is defined as follows:
(8)
\[ {\mathrm{IVIHFHG}_{w,\omega }}({\tilde{h}_{1}},{\tilde{h}_{2}},\dots ,{\tilde{h}_{n}})={\underset{i=1}{\overset{n}{\bigotimes }}}{({\tilde{h}_{\sigma (i)}})^{{w_{i}}}}\]
Definition 6 (See Joshi and Kumar, 2016).
(9)
\[ \begin{array}{l}\mathrm{IVIHFCI}({\tilde{h}_{1}},{\tilde{h}_{2}},\dots ,{\tilde{h}_{n}})\\ {} \hspace{1em}={\textstyle\textstyle\bigotimes _{i=1}^{n}}{({\tilde{h}_{(i)}})^{\mu ({A_{(i)}})-\mu ({A_{(i+1)}})}}\\ {} \hspace{2em}\big\{\big[{\textstyle\textstyle\prod _{i=1}^{n}}{\big({\mu _{l}^{(i)}}\big)^{\mu ({A_{(i)}})-\mu ({A_{(i+1)}})}},{\textstyle\textstyle\prod _{i=1}^{n}}{\big({\mu _{u}^{(i)}}\big)^{\mu ({A_{(i)}})-\mu ({A_{(i+1)}})}}\big],\\ {} \hspace{2em}\big[1-{\textstyle\textstyle\prod _{i=1}^{n}}{\big(1-{v_{l}^{(i)}}\big)^{\mu ({A_{(i)}})-\mu ({A_{(i+1)}})}},1-{\textstyle\textstyle\prod _{i=1}^{n}}{\big(1-{v_{u}^{(i)}}\big)^{\mu ({A_{(i)}})-\mu ({A_{(i+1)}})}}\big]\\ {} \hspace{2em}\big|{\tilde{\alpha }_{(i)}}\in {\tilde{h}_{(i)}},\hspace{2.5pt}i=1,2,\dots ,N\big\},\end{array}\]Remark 3.
Example 1 (See Joshi and Kumar, 2016).
Remark 4.
3 New Interval-Valued Intuitionistic Hesitant Fuzzy Aggregation Operators
Definition 7.
-
(i) ${\lambda _{1}}{\tilde{h}_{1}}\oplus {\lambda _{2}}{\tilde{h}_{2}}=\{{\lambda _{1}}{\tilde{\alpha }_{i}}\oplus {\lambda _{2}}{\tilde{\alpha }_{j}}|{\tilde{\alpha }_{i}}\in {\tilde{h}_{1}},{\tilde{\alpha }_{j}}\in {\tilde{h}_{2}}\}=\{([{\lambda _{1}}{\mu _{l}^{i}}+{\lambda _{2}}{\mu _{l}^{j}},{\lambda _{1}}{\mu _{u}^{i}}+{\lambda _{2}}{\mu _{u}^{j}}],[{\lambda _{1}}{v_{l}^{i}}+{\lambda _{2}}{v_{l}^{j}},{\lambda _{1}}{v_{u}^{i}}+{\lambda _{2}}{v_{u}^{j}}])|{\tilde{\alpha }_{i}}\in {\tilde{h}_{1}},{\tilde{\alpha }_{j}}\in {\tilde{h}_{2}}\}$,
-
(ii) ${\tilde{h}_{1}^{{\lambda _{1}}}}\otimes {\tilde{h}_{2}^{{\lambda _{2}}}}=\{{\tilde{\alpha }_{i}^{{\lambda _{1}}}}\otimes {\tilde{\alpha }_{j}^{{\lambda _{2}}}}|{\tilde{\alpha }_{i}}\in {\tilde{h}_{1}},{\tilde{\alpha }_{j}}\in {\tilde{h}_{2}}\}=\{([{({\mu _{l}^{i}})^{{\lambda _{1}}}}{({\mu _{l}^{j}})^{{\lambda _{2}}}},{({\mu _{u}^{i}})^{{\lambda _{1}}}}{({\mu _{u}^{j}})^{{\lambda _{2}}}}],[{({v_{l}^{i}})^{{\lambda _{1}}}}{({v_{l}^{j}})^{{\lambda _{2}}}},{({v_{u}^{i}})^{{\lambda _{1}}}}{({v_{u}^{j}})^{{\lambda _{2}}}}])|{\tilde{\alpha }_{i}}\in {\tilde{h}_{1}},{\tilde{\alpha }_{j}}\in {\tilde{h}_{2}}\},$ where ${\lambda _{1}},{\lambda _{2}}\in [0,1]$ with ${\lambda _{1}}+{\lambda _{2}}\leqslant 1$.
Remark 5.
Remark 6.
(10)
\[ S{h_{{x_{i}}}}(\mu ,X)=\sum \limits_{S\subseteq X\setminus {x_{i}}}\frac{(n-s-1)!s!}{n!}\big(\mu (S\cup {x_{i}})-\mu (S)\big),\hspace{1em}\forall {x_{i}}\in X,\]Remark 7.
Property 1.
-
(i) Let ${x_{i}}$ and ${x_{j}}$ be two elements in X. If we have $\mu (S\cup {x_{i}})=\mu (S\cup {x_{j}})$ for all $S\subseteq X\setminus \{{x_{i}},{x_{j}}\}$, then $S{h_{{x_{i}}}}(\mu ,X)=S{h_{{x_{j}}}}(\mu ,X)$;
-
(ii) Let ${x_{i}}$ be an element in X. If we have $\mu (S\cup {x_{i}})=\mu (S)$ for all $S\subseteq X\setminus {x_{i}}$, then $S{h_{{x_{i}}}}(\mu ,X)=0$;
-
(iii) Let ${x_{i}}$ be an element in X. If we have $\mu (S\cup {x_{i}})=\mu (S)+\mu ({x_{i}})$ for all $S\subseteq X\setminus {x_{i}}$, then $S{h_{{x_{i}}}}(\mu ,X)=\mu ({x_{i}})$;
-
(iv) The Shapley value vector ${\{S{h_{{x_{i}}}}(\mu ,X)\}_{{x_{i}}\in X}}$ is a normalized weight vector on X, namely, $S{h_{{x_{i}}}}(\mu ,X)\geqslant 0$ for all ${x_{i}}\in X$ and ${\textstyle\sum _{{x_{i}}\in X}}S{h_{{x_{i}}}}(\mu ,X)=1$.
Remark 8.
Definition 8.
-
(i) The IVIHFSWA operator is defined as follows:
(11)
\[ \begin{array}{l}\mathrm{IVIHFSWA}({\tilde{h}_{1}},{\tilde{h}_{2}},\dots ,{\tilde{h}_{n}})\\ {} \hspace{1em}={\textstyle\textstyle\bigoplus _{i=1}^{n}}(S{h_{{x_{i}}}}(\mu ,X){\tilde{h}_{i}}\\ {} \hspace{1em}=\big\{\big[{\textstyle\textstyle\sum _{i=1}^{n}}S{h_{{x_{i}}}}(\mu ,X){\mu _{l}^{i}},{\textstyle\textstyle\sum _{i=1}^{n}}S{h_{{x_{i}}}}(\mu ,X){\mu _{u}^{i}}\big],\\ {} \hspace{2em}\big[{\textstyle\textstyle\sum _{i=1}^{n}}S{h_{{x_{i}}}}(\mu ,X){v_{l}^{i}},{\textstyle\textstyle\sum _{i=1}^{n}}S{h_{{x_{i}}}}(\mu ,X){v_{u}^{i}}\big]\big|{\tilde{\alpha }_{i}}\in {\tilde{h}_{i}},\imath =1,2,\dots ,n\big\};\end{array}\] -
(ii) The IVIHFSWGM operator is defined as follows:
(12)
\[ \begin{array}{l}\mathrm{IVIHFSWGM}({\tilde{h}_{1}},{\tilde{h}_{2}},\dots ,{\tilde{h}_{n}})\\ {} \hspace{1em}={\textstyle\textstyle\bigotimes _{i=1}^{n}}{({\tilde{h}_{i}})^{S{h_{{x_{i}}}}(\mu ,X)}}\\ {} \hspace{1em}=\big\{\big[{\textstyle\textstyle\prod _{i=1}^{n}}{\big({\mu _{l}^{i}}\big)^{S{h_{{x_{i}}}}(\mu ,X)}},{\textstyle\textstyle\prod _{i=1}^{n}}{\big({\mu _{u}^{i}}\big)^{S{h_{{x_{i}}}}(\mu ,X)}}\big],\\ {} \hspace{2em}\big[{\textstyle\textstyle\prod _{i=1}^{n}}{\big({v_{l}^{i}}\big)^{S{h_{{x_{i}}}}(\mu ,X)}},{\textstyle\textstyle\prod _{i=1}^{n}}{\big({v_{u}^{i}}\big)^{S{h_{{x_{i}}}}(\mu ,X)}}\big]\big|{\tilde{\alpha }_{i}}\in {\tilde{h}_{i}},\hspace{2.5pt}i=1,2,\dots ,n\big\},\end{array}\]
Remark 9.
Definition 9.
-
(i) The IVIHFHSWA operator is defined as follows:
(13)
\[ \begin{array}{l}\mathrm{IVIHFHSWA}({\tilde{h}_{1}},{\tilde{h}_{2}},\dots ,{\tilde{h}_{n}})\\ {} \hspace{1em}=\frac{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X){\tilde{h}_{(j)}}}{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}\\ {} \hspace{1em}=\Big\{\Big[\frac{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X){\mu _{l}^{(j)}}}{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)},\frac{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X){\mu _{u}^{(j)}}}{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}\Big],\\ {} \hspace{2em}\Big[\frac{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X){v_{l}^{(j)}}}{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)},\frac{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X){v_{u}^{(j)}}}{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}\Big]\\ {} \hspace{2em}\Big|{\tilde{\alpha }_{i}}\in {\tilde{h}_{i}},\imath =1,2,\dots ,n\Big\};\end{array}\] -
(ii) The IVIHFHSWGM operator is defined as follows:
(14)
\[ \begin{array}{l}\mathrm{IVIHFHSWA}({\tilde{h}_{1}},{\tilde{h}_{2}},\dots ,{\tilde{h}_{n}})\\ {} \hspace{1em}={\textstyle\textstyle\bigotimes _{i=1}^{n}}{({\tilde{h}_{(j)}})^{\frac{S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}}}\\ {} \hspace{1em}=\Big\{\Big[{\textstyle\textstyle\prod _{j=1}^{n}}{\big({\mu _{l}^{(j)}}\big)^{\frac{S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}}},{\textstyle\textstyle\prod _{j=1}^{n}}{({\mu _{u}^{(j)}})^{\frac{S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}}}\Big],\\ {} \hspace{2em}{\textstyle\textstyle\prod _{j=1}^{n}}{\big({v_{l}^{(j)}}\big)^{\frac{S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}}},{\textstyle\textstyle\prod _{j=1}^{n}}{\big({v_{u}^{(j)}}\big)^{\frac{S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}{{\textstyle\textstyle\sum _{j=1}^{n}}S{h_{j}}(v,N)S{h_{{x_{(j)}}}}(\mu ,X)}}}\\ {} \hspace{2em}\Big|{\tilde{\alpha }_{i}}\in {\tilde{h}_{i}},\hspace{2.5pt}i=1,2,\dots ,n\Big\},\end{array}\]
Remark 10.
Definition 10 (See Grabisch, 1997).
Theorem 1 (See Grabisch, 1997).
Theorem 2 (See Meng and Tang, 2013).
Remark 11.
4 Hamming Distance Based Models for the Optimal Fuzzy Measures
4.1 A New Hamming Distance Measure on IVIHFEs
Example 2.
Definition 11.
Definition 12.
(18)
\[ D({\tilde{h}_{1}},{\tilde{h}_{2}})=\frac{\overrightarrow{D({\tilde{h}_{1}},{\tilde{h}_{2}})}+\overrightarrow{D({\tilde{h}_{2}},{\tilde{h}_{1}})}}{2},\]Property 2.
-
(i) $D({\tilde{h}_{1}},{\tilde{h}_{2}})=0$ if and only if ${\tilde{h}_{1}}={\tilde{h}_{2}}$, namely, there exists ${\tilde{\beta }_{j}}$ such that ${\tilde{\alpha }_{i}}={\tilde{\beta }_{j}}$ for all ${\tilde{\alpha }_{i}}\in {\tilde{h}_{1}}$, and there is ${\tilde{\alpha }_{i}}$ such that ${\tilde{\beta }_{j}}={\tilde{\alpha }_{i}}$ for all ${\tilde{\beta }_{j}}\in {\tilde{h}_{2}}$;
-
(ii) $D({\tilde{h}_{1}},{\tilde{h}_{2}})=1$ if and only if ${\tilde{h}_{1}}=\{([1,1],[0,0])\}$ and ${\tilde{h}_{2}}=\{([0,0],[1,1])\}$ or ${\tilde{h}_{1}}=\{([0,0],[1,1])\}$ and ${\tilde{h}_{1}}=\{([1,1],[0,0])\}$. Otherwise, we have $0<D({\tilde{h}_{1}},{\tilde{h}_{2}})<1$ with ${\tilde{h}_{1}}\ne {\tilde{h}_{2}}$;
-
(iii) $D({\tilde{h}_{1}},{\tilde{h}_{2}})=D({\tilde{h}_{1}},{\tilde{h}_{2}})$.
4.2 Models for the Optimal Fuzzy Measures and 2-Additive Measures
(19)
\[ \begin{array}{l}\min {\textstyle\sum \limits_{i=1}^{m}}{\textstyle\sum \limits_{j=1}^{n}}\frac{D({\tilde{h}^{\prime }_{ij}},{\tilde{h}^{\prime }_{j}}{^{+}})}{D({\tilde{h}^{\prime }_{ij}},{\tilde{h}^{\prime }_{j}}{^{+}})+D({\tilde{h}^{\prime }_{ij}},{\tilde{h}^{\prime }_{j}}{^{-}})}S{h_{{C_{j}}}}(\mu ,C)\\ {} \text{s.t.}\hspace{2.5pt}\left\{\begin{array}{l@{\hskip4.0pt}l}\mu (S)\leqslant \mu (T),\hspace{1em}& \forall S\subseteq T\subseteq C,\\ {} \mu ({C_{i}})\in {W_{{C_{i}}}},\hspace{1em}& i=1,2,\dots ,n,\\ {} \mu ({C_{i}})\geqslant 0,\hspace{1em}& i=1,2,\dots ,n,\end{array}\right.\end{array}\](20)
\[ \begin{array}{l}\min {\textstyle\sum \limits_{i=1}^{m}}{\textstyle\sum \limits_{j=1}^{n}}\frac{D({\tilde{h}^{\prime }_{ij}},{\tilde{h}^{\prime }_{j}}{^{+}})}{D({\tilde{h}^{\prime }_{ij}},{\tilde{h}^{\prime }_{j}}{^{+}})+D({\tilde{h}^{\prime }_{ij}},{\tilde{h}^{\prime }_{j}}{^{-}})}S{h_{{C_{j}}}}(\mu ,C)\\ {} \text{s.t.}\hspace{2.5pt}\left\{\begin{array}{l}{\textstyle\sum _{{C_{j}}\in S\setminus {C_{i}}}}\left(\mu ({C_{i}},{C_{j}})-\mu ({C_{j}})\right)\geqslant (s-2)\mu ({C_{i}}),\\ {} \hspace{1em}\forall S\subseteq C,\hspace{1em}\forall {C_{i}}\in S,\hspace{2.5pt}s\geqslant 2,\\ {} \textstyle\sum \limits_{\{{C_{i}},{C_{j}}\}\subseteq C}\mu ({C_{i}},{C_{j}})-(n-2)\textstyle\sum \limits_{{C_{i}}\in C}\mu ({C_{i}})=1,\\ {} \mu ({C_{i}})\in {W_{{C_{i}}}},\hspace{1em}i=1,2,\dots ,n,\\ {} \mu ({C_{i}})\geqslant 0,\hspace{1em}i=1,2,\dots ,n,\end{array}\right.\end{array}\](21)
\[ \begin{array}{l}\min \frac{3-n}{2}{\textstyle\sum \limits_{i=1}^{m}}{\textstyle\sum \limits_{j=1}^{n}}\frac{D({\tilde{h}^{\prime }_{ij}},{\tilde{h}^{\prime }_{j}}{^{+}})}{D({\tilde{h}^{\prime }_{ij}},{\tilde{h}^{\prime }_{j}}{^{+}})+D({\tilde{h}^{\prime }_{ij}},{\tilde{h}^{\prime }_{j}}{^{-}})}\mu ({C_{j}})\\ {} \hspace{1em}+\displaystyle \frac{1}{2}{\textstyle\sum \limits_{i=1}^{m}}{\textstyle\sum \limits_{j=1}^{n}}{\textstyle\sum \limits_{k=1,k\ne j}^{n}}\frac{D({\tilde{h}^{\prime }_{ij}},{\tilde{h}^{\prime }_{j}}{^{+}})}{D({\tilde{h}^{\prime }_{ij}},{\tilde{h}^{\prime }_{j}}{^{+}})+D({\tilde{h}^{\prime }_{ij}},{\tilde{h}^{\prime }_{j}}{^{-}})}\big(\mu ({C_{j}},{C_{k}})-\mu ({C_{k}})\big)\\ {} \text{s.t.}\hspace{2.5pt}\left\{\begin{array}{l}{\textstyle\sum _{{\mathrm{C}_{j}}\in \mathrm{S}\setminus {\mathrm{C}_{i}}}}\left(\mu ({\mathrm{C}_{i}}{,\mathrm{C}_{j}})-\mu ({\mathrm{C}_{j}})\right)\geqslant (s-2)\mu ({\mathrm{C}_{i}}),\\ {} \forall S\subseteq \mathrm{C},\hspace{1em}\forall {\mathrm{C}_{i}}\in S,\hspace{2.5pt}s\geqslant 2,\\ {} {\textstyle\sum _{\{{\mathrm{C}_{i}},{\mathrm{C}_{j}}\}\subseteq \mathrm{C}}}\mu ({\mathrm{C}_{i}}{,\mathrm{C}_{j}})-(n-2)\textstyle\sum \limits_{{\mathrm{C}_{i}}\in \mathrm{C}}\mu ({\mathrm{C}_{i}})=1,\\ {} \mu ({\mathrm{C}_{i}})\in {W_{{\mathrm{C}_{i}}}},\hspace{1em}i=1,2,\dots ,n,\\ {} \mu ({\mathrm{C}_{i}})\geqslant 0,\hspace{1em}i=1,2,\dots ,n.\end{array}\right.\end{array}\](22)
\[ \begin{array}{l}\min {\textstyle\sum \limits_{i=1}^{m}}\bigg({\textstyle\sum \limits_{j=1}^{\operatorname{}\mathrm{d}(n)}}(1-{R_{i(j)}})S{h_{j}}(\mu ,N)+{\textstyle\sum \limits_{j=\operatorname{}\mathrm{d}(n)+1}^{n}}{R_{i(j)}}S{h_{j}}(\mu ,N)\bigg)\\ {} \text{s.t.}\hspace{2.5pt}\left\{\begin{array}{l@{\hskip4.0pt}l}\mu (S)\leqslant \mu (T),\hspace{1em}& \forall S\subseteq T\subseteq N,\\ {} \mu (i)\in {W_{i}},\hspace{1em}& i=1,2,\dots ,n,\\ {} \mu (i)\geqslant 0,\hspace{1em}& i=1,2,\dots ,n,\end{array}\right.\end{array}\](23)
\[ \begin{array}{l}\min \displaystyle \frac{3-n}{2}{\textstyle\sum \limits_{i=1}^{m}}\bigg({\textstyle\sum \limits_{j=1}^{\operatorname{}\mathrm{d}(n)}}\left(1-{R_{i(j)}}\right)v(j)+{\textstyle\sum \limits_{j=\mathrm{mid}(n)+1}^{n}}{R_{i(j)}}v(j)\bigg)\\ {} +\displaystyle \frac{1}{2}{\textstyle\sum \limits_{i=1}^{m}}\bigg({\textstyle\sum \limits_{j=1}^{\mathrm{mid}(n)}}{\textstyle\sum \limits_{k=1,k\ne j}^{n}}(1-{R_{i(j)}})(v(j,k)-\mu (k))\\ {} +{\textstyle\sum \limits_{j=\mathrm{d}(n)+1}^{n}}{\textstyle\sum \limits_{k=1,k\ne j}^{n}}{R_{i(j)}}(v(j,k)-\mu (k))\bigg)\\ {} s.t.\left\{\begin{array}{l}{\textstyle\sum _{j\in N\setminus i}}(v(i,j)-v(j))\geqslant (s-2)v(i),\forall S\subseteq N,\forall i\in S,s\geqslant 2,\\ {} {\textstyle\sum _{\{i,j\}\in N}}v(i,j)-(n-2){\textstyle\sum _{i\in N}}v(i)=1,\\ {} v(i)\in {W_{i}},\hspace{1em}i=1,2,\dots ,n,\\ {} v(i)\geqslant 0,\hspace{1em}i=1,2,\dots ,n,\end{array}\right.\end{array}\](24)
\[ \text{s.t.}\hspace{2.5pt}\left\{\begin{array}{l}{\textstyle\sum _{j\in N\setminus i}}\left(v(i,j)-v(j)\right)\geqslant (s-2)v(i),\hspace{1em}\forall S\subseteq N,\forall i\in S,s\geqslant 2,\\ {} {\textstyle\sum _{\{i,j\}\subseteq N}}v(i,j)-(n-2)\textstyle\sum \limits_{i\in N}v(i)=1,\\ {} v(i)=v(n-i+1),\hspace{1em}\forall i\in N,\\ {} v(i,j)=v(n-i+1,n-j+1),\hspace{1em}\forall i,j\in N,\\ {} v(i)\in {W_{i}},\hspace{1em}i=1,2,\dots ,n,\\ {} v(i)\geqslant 0,\hspace{1em}i=1,2,\dots ,n,\end{array}\right.\]5 A New Approach to Decision Making with IVIHFEs
Example 3.
Table 2
${C_{1}}$ | ${C_{2}}$ | ${C_{3}}$ | ${C_{4}}$ | |
${A_{1}}$ | $\begin{array}[t]{l}\{([0.2,0.3],[0.4,0.5]),\\ {} ([0.4,0.45],[0.3,0.4])\}\end{array}$ | $\begin{array}[t]{l}\{([0.3,0.5],[0.3,0.4]),\\ {} ([0.6,0.8],[0.1,0.2])\}\end{array}$ | $\{([0.4,0.6],[0.3,0.4])\}$ | $\begin{array}[t]{l}\{([0.3,0.5],[0.4,0.5]),\\ {} ([0.6,0.7],[0.2,0.3])\}\end{array}$ |
${A_{2}}$ | $\begin{array}[t]{l}\{([0.2,0.4],[0.5,0.6]),\\ {} ([0.6,0.8],[0.1,0.2])\}\end{array}$ | $\begin{array}[t]{l}\{([0.2,0.3],[0.5,0.6]),\\ {} ([0.4,0.5],[0.3,0.4])\}\end{array}$ | $\begin{array}[t]{l}\{([0.3,0.4],[0.4,0.5]),\\ {} ([0.6,0.7],[0.2,0.3])\}\end{array}$ | $\begin{array}[t]{l}\{([0.5,0.7],[0.1,0.3]),\\ {} ([0.8,0.9],[0.1,0.1])\}\end{array}$ |
${A_{3}}$ | $\begin{array}[t]{l}\{([0.3,0.5],[0.3,0.4]),\\ {} ([0.6,0.7],[0.2,0.3])\}\end{array}$ | $\{([0.6,0.8],[0.1,0.2])\}$ | $\begin{array}[t]{l}\{([0.2,0.4],[0.4,0.5]),\\ {} ([0.5,0.6],[0.2,0.3])\}\end{array}$ | $\begin{array}[t]{l}\{([0.2,0.5],[0.3,0.4]),\\ {} ([0.6,0.7],[0.2,0.3])\}\end{array}$ |
${A_{4}}$ | $\begin{array}[t]{l}\{([0.2,0.4],[0.5,0.6]),\\ {} ([0.5,0.7],[0.1,0.3])\}\end{array}$ | $\{([0.3,0.4],[0.4,0.5])\}$ | $\begin{array}[t]{l}\{([0.2,0.3],[0.4,0.6]),\\ {} ([0.4,0.5],[0.3,0.5]),\\ {} ([0.7,0.8],[0.1,0.2])\}\end{array}$ | $\{([0.6,0.8],[0.1,0.2])\}$ |
Table 3
Methods | Ranking values ${A_{1}}$, ${A_{2}}$, ${A_{3}}$, ${A_{4}}$ | Ranking orders | |||
Our method using the IVIHFHSWA operator | 0.2072 | 0.1075 | 0.2813 | 0.0802 | ${A_{3}}\succ {A_{1}}\succ {A_{2}}\succ {A_{4}}$ |
Our method using the IVIHFHSWGM operator | 0.2110 | 0.0997 | 0.2789 | 0.0848 | ${A_{3}}\succ {A_{1}}\succ {A_{4}}\succ {A_{2}}$ |
Joshi and Kumar’s method (Joshi and Kumar, 2016) | 0.8653 | 0.8843 | 0.8810 | 0.8779 | ${A_{2}}\succ {A_{3}}\succ {A_{4}}\succ {A_{1}}$ |
Zhang’s method using the IVIHFWA operator (Zhang, 2013) | 0.2243 | 0.2646 | 0.3562 | 0.2129 | ${A_{3}}\succ {A_{2}}\succ {A_{1}}\succ {A_{4}}$ |
Zhang’s method using the IVIHFWG operator (Zhang, 2013) | 0.1754 | 0.1142 | 0.2783 | 0.0932 | ${A_{3}}\succ {A_{1}}\succ {A_{2}}\succ {A_{4}}$ |
Zhang’s method using the IVIHFOWA operator (Zhang, 2013) | 0.1732 | 0.2513 | 0.2583 | 0.1858 | ${A_{3}}\succ {A_{2}}\succ {A_{4}}\succ {A_{1}}$ |
Zhang’s method using the IVIHFOWG operator (Zhang, 2013) | 0.1389 | 0.1265 | 0.2110 | 0.0894 | ${A_{3}}\succ {A_{1}}\succ {A_{2}}\succ {A_{4}}$ |
Zhang’s method using the IVIHFHA operator (Zhang, 2013) | 0.1960 | 0.2410 | 0.2431 | 0.2051 | ${A_{3}}\succ {A_{2}}\succ {A_{4}}\succ {A_{1}}$ |
Zhang’s method using the IVIHFHG operator (Zhang, 2013) | -0.1969 | -0.2394 | -0.2217 | -0.2470 | ${A_{1}}\succ {A_{3}}\succ {A_{2}}\succ {A_{4}}$ |
Example 4.
Table 4
${C_{1}}$ | ${C_{2}}$ | ${C_{3}}$ | ${C_{4}}$ | |
${A_{1}}$ | $\begin{array}[t]{l}\{([0.5,0.6],[0.2,0.3]),\\ {} ([0.6,0.7],[0.2,0.3])\}\end{array}$ | $\begin{array}[t]{l}\{([0.3,0.5],[0.3,0.4]),\\ {} ([0.6,0.7],[0.2,0.3])\}\end{array}$ | $\{([0.4,0.5],[0.2,0.4])\}$ | $\{([0.3,0.4],[0.3,0.5])\}$ |
${A_{2}}$ | $\{([0.6,0.8],[0.1,0.2])\}$ | $\begin{array}[t]{l}\{([0.2,0.3],[0.4,0.5]),\\ {} ([0.4,0.5],[0.3,0.4])\}\end{array}$ | $\{([0.5,0.7],[0.1,0.3])\}$ | $\begin{array}[t]{l}\{([0.4,0.5],[0.2,0.4]),\\ {} ([0.6,0.7],[0.1,0.2])\}\end{array}$ |
${A_{3}}$ | $\{([0.5,0.7],[0.2,0.3])\}$ | $\{([0.3,0.5],[0.2,0.3])\}$ | $\begin{array}[t]{l}\{([0.2,0.4],[0.3,0.5]),\\ {} ([0.4,0.5],[0.3,0.5])\},\\ {} ([0.6,0.7],[0.2,0.3])\}\end{array}$ | $\{([0.4,0.6],[0.3,0.4])\}$ |
${A_{4}}$ | $\begin{array}[t]{l}\{([0.3,0.4],[0.4,0.5]),\\ {} ([0.5,0.6],[0.3,0.4])\}\end{array}$ | $\{([0.4,0.6],[0.1,0.3])\}$ | $\begin{array}[t]{l}\{([0.5,0.6],[0.2,0.3]),\\ {} ([0.7,0.8],[0.1,0.2])\}\end{array}$ | $\begin{array}[t]{l}\{([0.3,0.4],[0.3,0.5]),\\ {} ([0.5,0.6],[0.2,0.4])\}\end{array}$ |
Table 5
${C_{1}}$ | ${C_{2}}$ | ${C_{3}}$ | ${C_{4}}$ | |
${A_{1}}$ | $\begin{array}[t]{l}\{([0.2,0.3],[0.5,0.6]),\\ {} ([0.2,0.3],[0.6,0.7])\}\end{array}$ | $\begin{array}[t]{l}\{([0.3,0.5],[0.3,0.4]),\\ {} ([0.6,0.7],[0.2,0.3])\}\end{array}$ | $\{([0.2,0.4],[0.4,0.5])\}$ | $\{([0.3,0.5],[0.3,0.4])\}$ |
${A_{2}}$ | $\{([0.1,0.2],[0.6,0.7])\}$ | $\begin{array}[t]{l}\{([0.2,0.3],[0.4,0.5]),\\ {} ([0.4,0.5],[0.3,0.4])\}\end{array}$ | $\{([0.1,0.3],[0.5,0.7])\}$ | $\begin{array}[t]{l}\{([0.2,0.4],[0.4,0.5]),\\ {} ([0.1,0.2],[0.6,0.7])\}\end{array}$ |
${A_{3}}$ | $\{([0.2,0.3],[0.5,0.7])\}$ | $\{([0.3,0.5],[0.2,0.3])\}$ | $\begin{array}[t]{l}\{([0.3,0.5],[0.2,0.4]),\\ {} ([0.3,0.5],[0.4,0.5]),\\ {} ([0.2,0.3],[0.6,0.7])\}\end{array}$ | $\{([0.3,0.4],[0.3,0.6])\}$ |
${A_{4}}$ | $\begin{array}[t]{l}\{([0.4,0.5],[0.3,0.4]),\\ {} ([0.3,0.4],[0.5,0.6])\}\end{array}$ | $\{([0.4,0.6],[0.1,0.3])\}$ | $\begin{array}[t]{l}\{([0.2,0.3],[0.5,0.6]),\\ {} ([0.1,0.2],[0.7,0.8])\}\end{array}$ | $\begin{array}[t]{l}\{([0.3,0.5],[0.3,0.4]),\\ {} ([0.2,0.4],[0.5,0.6])\}\end{array}$ |
Table 6
Methods | Ranking values ${A_{1}}$, ${A_{2}}$, ${A_{3}}$, ${A_{4}}$ | Ranking orders | |||
Our method using the IVIHFHSWA operator | −0.0030 | −0.1146 | −0.0318 | −0.0059 | ${A_{1}}\succ {A_{4}}\succ {A_{3}}\succ {A_{2}}$ |
Our method using the IVIHFHSWGM operator | 0.2110 | 0.0997 | 0.2789 | 0.0848 | ${A_{1}}\succ {A_{4}}\succ {A_{3}}\succ {A_{2}}$ |
Joshi and Kumar’s method (Joshi and Kumar, 2016) | 0.8653 | 0.8843 | 0.8810 | 0.8779 | ${A_{1}}\succ {A_{4}}\succ {A_{3}}\succ {A_{2}}$ |
Zhang’s method using the IVIHFWA operator (Zhang, 2013) | 0.2243 | 0.2646 | 0.3562 | 0.2129 | ${A_{4}}\succ {A_{1}}\succ {A_{3}}\succ {A_{2}}$ |
Zhang’s method using the IVIHFWG operator (Zhang, 2013) | 0.1754 | 0.1142 | 0.2783 | 0.0932 | ${A_{1}}\succ {A_{4}}\succ {A_{3}}\succ {A_{2}}$ |
Zhang’s method using the IVIHFOWA operator (Zhang, 2013) | 0.1732 | 0.2513 | 0.2583 | 0.1858 | ${A_{1}}\succ {A_{4}}\succ {A_{3}}\succ {A_{2}}$ |
Zhang’s method using the IVIHFOWG operator (Zhang, 2013) | 0.1389 | 0.1265 | 0.2110 | 0.0894 | ${A_{1}}\succ {A_{3}}\succ {A_{4}}\succ {A_{2}}$ |
Zhang’s method using the IVIHFHA operator (Zhang, 2013) | 0.1960 | 0.2410 | 0.2431 | 0.2051 | ${A_{4}}\succ {A_{1}}\succ {A_{3}}\succ {A_{2}}$ |
Zhang’s method using the IVIHFHG operator (Zhang, 2013) | -0.1969 | -0.2394 | -0.2217 | -0.2470 | ${A_{1}}\succ {A_{4}}\succ {A_{3}}\succ {A_{2}}$ |
Table 7
Our method | Method in Joshi and Kumar (2016) | Method in Zhang (2013) | |
Can the used operational laws preserve the monotonicity? | Yes | No | No |
Are the weights of criteria for the different alternatives the same? | Yes | No | Yes |
Are the interactive characteristics between the weights considered? | Yes | Yes | No |
Can the complementary, redundant and independent characteristics between the weights of elements be reflected simultaneously? | Yes | No | No |
Is the situation where the weighting information is incompletely known considered? | Yes | No | No |