Pub. online:5 Aug 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 16, Issue 1 (2005), pp. 131–144
Abstract
The aim of the given paper is the development of an approach for parametric identification of Wiener systems with piecewise linear nonlinearities, i.e., when the linear part with unknown parameters is followed by a saturation-like function with unknown slopes. It is shown here that by a simple data reordering and by a following data partition the problem of identification of a nonlinear Wiener system could be reduced to a linear parametric estimation problem. Afterwards, estimates of the unknown parameters of linear regression models are calculated by processing respective particles of input-output data. A technique based on ordinary least squares (LS) is proposed here for the estimation of parameters of linear and nonlinear parts of the Wiener system, including the unknown threshold of piecewise nonlinearity, too. The results of numerical simulation and identification obtained by processing observations of input-output signals of a discrete-time Wiener system with a piecewise nonlinearity by computer are given.
Journal:Informatica
Volume 25, Issue 3 (2014), pp. 425–437
Abstract
This paper introduces a comparison of one linear and two nonlinear one-step-ahead predictive models that were used to describe the relationship between human emotional signals (excitement, frustration, and engagement/boredom) and virtual dynamic stimulus (virtual 3D face with changing distance-between-eyes). An input–output model building method is proposed that allows building a stable model with the smallest output prediction error. Validation was performed using the recorded signals of four volunteers. Validation results of the models showed that all three models predict emotional signals in relatively high prediction accuracy.
Journal:Informatica
Volume 17, Issue 2 (2006), pp. 199–206
Abstract
This paper presents an iterative autoregressive system parameter estimation algorithm in the presence of white observation noise. The algorithm is based on the parameter estimation bias correction approach. We use high order Yule–Walker equations, sequentially estimate the noise variance, and exploit these estimated variances for the bias correction. The improved performance of the proposed algorithm in the presence of white noise is demonstrated via Monte Carlo experiments.
Journal:Informatica
Volume 17, Issue 1 (2006), pp. 55–68
Abstract
The aim of the given paper is the development of an approach for parametric identification of Hammerstein systems with piecewise linear nonlinearities, i.e., when the saturation-like function with unknown slopes is followed by a linear part with unknown parameters. It is shown here that by a simple input data rearrangement and by a following data partition the problem of identification of a nonlinear Hammerstein system could be reduced to the linear parametric estimation problem. Afterwards, estimates of the unknown parameters of linear regression models are calculated by processing respective particles of input-output data. A technique based on ordinary least squares is proposed here for the estimation of parameters of linear and nonlinear parts of the Hammerstein system, including the unknown threshold of the piecewise nonlinearity, too. The results of numerical simulation and identification obtained by processing observations of input-output signals of a discrete-time Hammerstein system with a piecewise nonlinearity with positive slopes by computer are given.
Journal:Informatica
Volume 6, Issue 1 (1995), pp. 71–84
Abstract
The aim of the given paper is the development of optimal and tuned models and ordinary well-known on-line procedures of unknown parameter estimation for inverse systems (IS) using current observations to be processed. Such models of IS are worked out in the case of correlated additive noise acting on the output of the initial direct system (DS). The results of numerical investigation by means of computer (Table 1) are given.