Performance Improved Modified Fuzzy C-Means Algorithm for Image Segmentation Applications
Volume 26, Issue 4 (2015), pp. 635–648
Pub. online: 1 January 2015
Type: Research Article
Received
1 September 2013
1 September 2013
Accepted
1 April 2015
1 April 2015
Published
1 January 2015
1 January 2015
Abstract
Fuzzy C-Means (FCM) algorithm is one of the commonly preferred fuzzy algorithms for image segmentation applications. Even though FCM algorithm is sufficiently accurate, it suffers from the computational complexity problem which prevents the usage of FCM in real-time applications. In this work, this convergence problem is tackled through the proposed Modified FCM (MFCM) algorithm. In this algorithm, several clusters among the input data are formed based on similarity measures and one representative data from each cluster is used for FCM algorithm. Hence, this methodology minimizes the convergence time period requirement of the conventional FCM algorithm to higher extent. This proposed approach is experimented on Magnetic Resonance (MR) brain tumor images. Experimental results suggest promising results for the MFCM algorithm in terms of the performance measures.