Journal:Informatica
Volume 14, Issue 1 (2003), pp. 121–130
Abstract
Recent publications on multidimensional scaling express contradicting opinion on multimodality of STRESS criterion. An example has been published with rigorously provable multimodality of STRESS. We present an example of data and the rigorous proof of multimodality of SSTRESS for this data. Some comments are included on widely accepted opinion that minimization of SSTRESS is easier than minimization of STRESS.
Journal:Informatica
Volume 8, Issue 3 (1997), pp. 425–430
Abstract
In this paper we are concerned with global optimization, which can be defined as the problem of finding points on a bounded subset of Rm, in which some real-valued function f(x) assumes its optimal value. We consider here a global optimization algorithm. We present a stochastic approach, which is based on the simulated annealing algorithm. The optimization function f(x) here is discrete and with noise.
Journal:Informatica
Volume 2, Issue 2 (1991), pp. 248–254
Abstract
In well-known statistical models of global optimization only values of objective functions are taken into consideration. However, efficient algorithms of local optimization are also based on the use of gradients of objective functions. Thus, we are interested in a possibility of the use of gradients in statistical models of multimodal functions, aiming to create productive algorithms of global optimization.
Journal:Informatica
Volume 1, Issue 1 (1990), pp. 71–88
Abstract
In the paper the global optimization is described from the point of an interactive software design. The interactive software that implements numeric methods and other techniques to solve global optimization problems is presented. Some problems of such a software design are formulated and discussed.
Journal:Informatica
Volume 1, Issue 1 (1990), pp. 59–70
Abstract
In this paper the problem of optimization of multivariate multimodal functions observed with random error is considered. Using the random function for a statistical model of the objective function the minimization procedure is suggested. This algorithm is convergent on a discrete set. To avoid computational difficulties, the modified algorithm is defined by substituting the parameters of minimization procedure by their estimates.