Pub. online:24 Jan 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 1 (2022), pp. 151–179
Abstract
To resolve both certificate management and key escrow problems, a certificateless public-key system (CLPKS) has been proposed. However, a CLPKS setting must provide a revocation mechanism to revoke compromised users. Thus, a revocable certificateless public-key system (RCLPKS) was presented to address the revocation issue and, in such a system, the key generation centre (KGC) is responsible to run this revocation functionality. Furthermore, a RCLPKS setting with an outsourced revocation authority (ORA), named RCLPKS-ORA setting, was proposed to employ the ORA to alleviate the KGC’s computational burden. Very recently it was noticed that adversaries may adopt side-channel attacks to threaten these existing conventional public-key systems (including CLPKS, RCLPKS and RCLPKS-ORA). Fortunately, leakage-resilient cryptography offers a solution to resist such attacks. In this article, the first leakage-resilient revocable certificateless encryption scheme with an ORA, termed LR-RCLE-ORA scheme, is proposed. The proposed scheme is formally shown to be semantically secure against three types of adversaries in the RCLPKS and RCLPKS-ORA settings while resisting side-channel attacks. In the proposed scheme, adversaries are allowed to continually extract partial ingredients of secret keys participated in various computational algorithms of the proposed scheme while retaining its security.
Journal:Informatica
Volume 31, Issue 3 (2020), pp. 597–620
Abstract
Very recently, side-channel attacks have threatened all traditional cryptographic schemes. Typically, in traditional cryptography, private/secret keys are assumed to be completely hidden to adversaries. However, by side-channel attacks, an adversary may extract fractional content of these private/secret keys. To resist side-channel attacks, leakage-resilient cryptography is a countermeasure. Identity-based public-key system (ID-PKS) is an attractive public-key setting. ID-PKS settings not only discard the certificate requirement, but also remove the construction of the public-key infrastructure. For solving the user revocation problem in ID-PKS settings, revocable ID-PKS (RID-PKS) setting has attracted significant attention. Numerous cryptographic schemes based on RID-PKS settings have been proposed. However, under RID-PKS settings, no leakage-resilient signature or encryption scheme is proposed. In this article, we present the first leakage-resilient revocable ID-based signature (LR-RIBS) scheme with cloud revocation authority (CRA) under the continual leakage model. Also, a new adversary model of LR-RIBS schemes with CRA is defined. Under this new adversary model, security analysis is made to demonstrate that our LR-RIBS scheme with CRA is provably secure in the generic bilinear group (GBG) model. Finally, performance analysis is made to demonstrate that our scheme is suitable for mobile devices.
Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 4 (2019), pp. 711–728
Abstract
The primitive of certificateless signature, since its invention, has become a widely studied paradigm due to the lack of key escrow problem and certificate management problem. However, this primitive cannot resist catastrophic damage caused by key exposure. Therefore, it is necessary to integrate revocation mechanism into certificateless signature. In this paper, we propose a new certificateless signature scheme with revocation (RCLS) and prove its security under the standard model. In the meanwhile, our scheme can resist malicious-but-passive Key Generation Center (KGC) attacks that were not possible in previous solutions. The theoretical analysis shows our scheme has high efficiency and practicality.
Journal:Informatica
Volume 23, Issue 3 (2012), pp. 487–505
Abstract
Revocation problem is a critical issue for key management of public key systems. Any certificate-based or identity (ID)-based public key systems must provide a revocation method to revoke misbehaving/compromised users from the public key systems. In the past, there was little work on studying the revocation problem of ID-based public key systems. Most recently, Tseng and Tsai presented a novel ID-based public key system with efficient revocation using a public channel, and proposed a practical revocable ID-based encryption (called RIBE). They proved that the proposed RIBE is semantically secure in the random oracle model. Although the ID-based encryption schemes based on the random oracle model can offer better performance, the resulting schemes could be insecure when random oracles are instantiated with concrete hash functions. In this paper, we employ Tseng and Tsai's revocable concept to propose a new RIBE without random oracles to provide full security. We demonstrate that the proposed RIBE is semantically secure against adaptive-ID attacks in the standard model.
Journal:Informatica
Volume 20, Issue 4 (2009), pp. 461–476
Abstract
In this paper, we propose a new ID-based threshold signature scheme from the bilinear pairings, which is provably secure in the random oracle model under the bilinear Diffie–Hellman assumption. Our scheme adopts the approach that the private key associated with an identity rather than the master key of PKG is shared. Comparing to the-state-of-art work by Baek and Zheng, our scheme has the following advantages. (1) The round-complexity of the threshold signing protocol is optimal. Namely, during the signing procedure, each party broadcasts only one message. (2) The communication channel is optimal. Namely, during the threshold signing procedure, the broadcast channel among signers is enough. No private channel between any two signing parties is needed. (3) Our scheme is much more efficient than the Baek and Zheng scheme in term of computation, since we try our best to avoid using bilinear pairings. Indeed, the private key of an identity is indirectly distributed by sharing a number xID∈ $\mathbb{Z}^{*}_{q}$, which is much more efficient than directly sharing the element in the bilinear group. And the major computationally expensive operation called distributed key generation protocol based on the bilinear map is avoided. (4) At last, the proactive security can be easily added to our scheme.