This paper examines ranking reversal (RR) in Multiple Criteria Decision Making (MCDM) using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Through a mathematical analysis of min-max and max normalization techniques and distance metrics (Euclidean, Manhattan, and Chebyshev), the study explores their impact on RR, particularly when new, high-performing alternatives are introduced. This research provides insight into the causes of RR, offering a framework that clarifies when and why RR occurs. The findings help decision-makers select appropriate techniques, promoting more consistent and reliable outcomes in real-world MCDM applications.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 2 (2018), pp. 303–320
Abstract
The probabilistic linguistic terms set (PLTS) can reflect different importance degrees or weights of all possible linguistic terms (LTs) given by the experts for a specific object. The PROMETHEE II method is an important ranking method which can comprise preferences as well as indifferences, and it has a unique characteristic that can provide different types of preference functions. Based on the advantages of the PLTS and the PROMETHEE II method, in this paper, we extend the PROMETHEE II method to process the probabilistic linguistic information (PLI), and propose the PL-PROMETHEE II method with an improved possibility degree formula which can avoid the weaknesses from the original formula. Then concerning the multi-attribute decision making (MADM) problems with totally unknown weight information, the maximum deviation method is used to get the objective weight vector of the attributes, and net flows of the alternatives from the PROMETHEE II method are used to rank the alternatives. Finally, a numerical example is given to illustrate the feasibility of the proposed method.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 2 (2018), pp. 187–210
Abstract
A relevant challenge introduced by decentralized installations of photo-voltaic systems is the mismatch between green energy production and the load curve for domestic use. We advanced an ICT solution that maximizes the self-consumption by an intelligent scheduling of appliances. The predictive approach is complemented with a reactive one to minimize the short term effects due to prediction errors and to unforeseen loads. Using real measures, we demonstrated that such errors can be compensated modulating the usage of continuously running devices such as fridges and heat-pumps. Linear programming is used to dynamically compute in real-time the optimal control of these devices.
Journal:Informatica
Volume 24, Issue 4 (2013), pp. 619–635
Abstract
“Strategy implementation” is an inseparable part of strategic management process. Transformation strategies to typical operations and daily functions of staff exert a significant role in organization success. Balanced scorecard (BSC) and strategy map help senior managers to perfectly implement and monitor the accomplishment of the strategies by transforming strategies into operational programs. Using BSC and strategy map, the strategies are translated into some action plans which help the achievement of organizational goals and strategies. Due to shortage of resources, usually all organization's action plans cannot be implemented completely; therefore, managers should make use of some tools for assigning and selecting more efective action plans. In this paper, a procedure is suggested on the basis of grey TOPSIS to determine the preference of action plans to better aid managers in selection of the most effective action plans in a group decision making process.
Journal:Informatica
Volume 11, Issue 3 (2000), pp. 257–268
Abstract
Fingerprint ridge frequency is a global feature, which is most prominently different in fingerprints of men and woman, and it also changes within the maturing period of a person. This paper proposes the method of fingerprint pre-classification, based on the ridge frequency replacement by the density of edge points of the ridge boundary. This method is to be used after applying the common steps in most fingerprint matching algorithms, namely the fingerprint image filtering, binarization and marking of good/bad image areas. The experimental performance evaluation of fingerprint pre-classification is presented. We have found that fingerprint pre-classification using the fingerprint ridge edges density is possible, and it enables to preliminary reject part of the fingerprints without heavy loss of the recognition quality. The paper presents the evaluation of two sources of fingerprint ridge edges density variability: a) different finger pressure during the fingerprint scanning, b) different distance between the geometrical center of the fingerprint and position of the fingerprint fragment.