Journal:Informatica
Volume 35, Issue 1 (2024), pp. 179–202
Abstract
The purpose of this manuscript is to develop a novel MAIRCA (Multi-Attribute Ideal-Real Comparative Analysis) method to solve the MCDM (Multiple Criteria Decision-Making) problems with completely unknown weights in the q-rung orthopair fuzzy (q-ROF) setting. Firstly, the new concepts of q-ROF Lance distance are defined and some related properties are discussed in this paper, from which we establish the maximizing deviation method (MDM) model for q-ROF numbers to determine the optimal criteria weight. Then, the Lance distance-based MAIRCA (MAIRCA-L) method is designed. In it, the preference, theoretical and real evaluation matrices are calculated considering the interaction relationship in q-ROF numbers, and the q-ROF Lance distance is applied to obtain the gap matrix. Finally, we manifest the effectiveness and advantage of the q-ROF MAIRCA-L method by two numerical examples.
Pub. online:10 Mar 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 1 (2021), pp. 145–161
Abstract
The main aim of the article is to propose a new multiple criteria decision-making approach for selecting alternatives, the newly-developed MULTIMOOSRAL approach, which integrates advantages of the three well-known and prominent multiple-criteria decision-making methods: MOOSRA, MOORA, and MULTIMOORA. More specifically, the MULTIMOOSRAL method has been further upgraded with an approach that can be clearly seen in the well-known WASPAS and CoCoSo methods, which rely on the integration of weighted sum and weighted product approaches. In addition to the above approaches, the MULTIMOOSRAL method also integrates a logarithmic approximation approach. The expectation from the development of this method is that the integration of several approaches can provide a much more reliable selection of the most appropriate alternative, which can be very important in cases where the performance of alternatives obtained by using some other method does not differ much. Finally, the ranking of alternatives based on the dominance theory, used in the MOORA and MULTIMOORA methods, is replaced by a new original approach that should allow a much simpler final ranking of alternatives in order to reach a stronger result with five different techniques. The suitability and efficacy of the proposed MULTIMOOSRAL approach are presented through an illustrative case study of the supplier selection.
Pub. online:1 Jan 2017Type:Research ArticleOpen Access
Journal:Informatica
Volume 28, Issue 1 (2017), pp. 181–192
Abstract
The aim of this manuscript is to propose a new extension of the MULTIMOORA method adapted for usage with a neutrosophic set. By using single valued neutrosophic sets, the MULTIMOORA method can be more efficient for solving complex problems whose solving requires assessment and prediction, i.e. those problems associated with inaccurate and unreliable data. The suitability of the proposed approach is presented through an example.
Journal:Informatica
Volume 23, Issue 1 (2012), pp. 141–154
Abstract
In some cases of using multi-criteria decision making methods for solving real-world problems ratings of alternatives cannot be determined precisely, and that is why they are expressed in the form of intervals. Therefore, the aim of this paper is to extend the MOORA method for solving decision making problems with interval data. By extending the ratio system part of MOORA method, an algorithm to determine the most preferable alternative among all possible alternatives, when performance ratings are given as intervals, is presented. Finally, an example is shown to highlight the proposed procedure, at the end of this paper.
Journal:Informatica
Volume 23, Issue 1 (2012), pp. 1–25
Abstract
Multi-Objective Optimization takes care of different objectives with the objectives keeping their own units. The internal mechanical solution of a Ratio System, producing dimensionless numbers, is preferred. The ratio system creates the opportunity to use a second approach: a Reference Point Theory, which uses the ratios of the ratio system. This overall theory is called MOORA (Multi-Objective Optimization by Ratio Analysis). The results are still more convincing if a Full Multiplicative Form is added forming MULTIMOORA. The control by three different approaches forms a guaranty for a solution being as non-subjective as possible. MULTIMOORA, tested after robustness, showed positive results.