Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 4 (2019), pp. 629–645
Abstract
Machine Translation has become an important tool in overcoming the language barrier. The quality of translations depends on the languages and used methods. The research presented in this paper is based on well-known standard methods for Statistical Machine Translation that are advanced by a newly proposed approach for optimizing the weights of translation system components. Better weights of system components improve the translation quality. In most cases, machine translation systems translate to/from English and, in our research, English is paired with a Slavic language, Slovenian. In our experiment, we built two Statistical Machine Translation systems for the Slovenian-English language pair of the Acquis Communautaire corpus. Both systems were optimized using self-adaptive Differential Evolution and compared to the other related optimization methods. The results show improvement in the translation quality, and are comparable to the other related methods.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 1 (2018), pp. 21–39
Abstract
The heliostat field of Solar Central Receiver Systems takes up to 50% of the initial investment and can cause up to 40% of energetic loss in operation. Hence, it must be carefully optimized. Design procedures usually rely on particular heliostat distribution models. In this work, optimization of the promising biomimetic distribution model is studied. Two stochastic population-based optimizers are applied to maximize the optical efficiency of fields: a genetic algorithm, micraGA, and a memetic one, UEGO. As far as the authors know, they have not been previously applied to this problem. However, they could be a good option according to their structure. Additionally, a Brute-Force Grid is used to estimate the global optimum and a Pure-Random Search is applied as a baseline reference. Our empirical results show that many different configurations of the distribution model lead to very similar solutions. Although micraGA exhibits poor performance, UEGO achieves the best results in a reduced time and seems appropriate for the problem at hand.
Journal:Informatica
Volume 27, Issue 2 (2016), pp. 323–334
Abstract
This paper reviews the interplay between global optimization and probability models, concentrating on a class of deterministic optimization algorithms that are motivated by probability models for the objective function. Some complexity results are described for the univariate and multivariate cases.
Journal:Informatica
Volume 22, Issue 4 (2011), pp. 471–488
Abstract
We describe an adaptive algorithm for approximating the global minimum of a continuous univariate function. The convergence rate of the error is studied for the case of a random objective function distributed according to the Wiener measure.
Journal:Informatica
Volume 5, Issues 3-4 (1994), pp. 364–372
Abstract
We consider finite population slotted ALOHA where each of n terminals has its own transmission probability pi. Given the overall traffic load λ, the probabilities pi are determined in such a way as to maximize throughput. This is achieved by solving a constrained optimization problem. The results of Abramson (1970) are obtained as a special case. Our recent results are improved (Mathar and Žilinskas, 1993).