Pub. online:1 Jan 2017Type:Research ArticleOpen Access
Journal:Informatica
Volume 28, Issue 4 (2017), pp. 583–608
Abstract
This paper presents a column generation-based modelling and solution approach for a teaching assistant workload scheduling problem that arises at academic institutions. A typical weekly workload schedule involves teaching deficiency classes, instructing problem-solving tutorial sessions, and allocating help-hours for students. For this purpose, a mixed-integer programming model that selects valid combinations of weekly schedules from the set of all feasible schedules is formulated. Due to the overwhelming number of variables in this model, an effective column generation procedure is developed. To illustrate the proof-of-concept along with modelling and algorithmic constructs, a case study related to the Department of Mathematics at Kuwait University is addressed. Computational results based on real data indicate that the generated schedules using the proposed model and solution procedure yield improved weekly workloads for teaching assistants in terms of fairness, and achieve enhanced satisfaction levels among assistants, as compared to schedules obtained using ad-hoc manual approaches.
Journal:Informatica
Volume 2, Issue 2 (1991), pp. 278–310
Abstract
In general terms some situations are described which require the exploitation of heuristics either to solve a mathematical optimization problem or to analyse results. A possibility to implement heuristic knowledge for selecting a suitable algorithm depending on available problem data and information retrieved from the user, is investigated in detail. We describe some inference strategies and knowledge representations that can be used in this case, and the rule-based implementation within the EMP system for nonlinear programming. Case studies are presented which outline on the one hand the heuristic recommendation of an optimization code and the achieved numerical results on the other hand.