Pub. online:20 Nov 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 1 (2024), pp. 155–178
Abstract
Metaheuristics are commonly employed as a means of solving many distinct kinds of optimization problems. Several natural-process-inspired metaheuristic optimizers have been introduced in the recent years. The convergence, computational burden and statistical relevance of metaheuristics should be studied and compared for their potential use in future algorithm design and implementation. In this paper, eight different variants of dragonfly algorithm, i.e. classical dragonfly algorithm (DA), hybrid memory-based dragonfly algorithm with differential evolution (DADE), quantum-behaved and Gaussian mutational dragonfly algorithm (QGDA), memory-based hybrid dragonfly algorithm (MHDA), chaotic dragonfly algorithm (CDA), biogeography-based Mexican hat wavelet dragonfly algorithm (BMDA), hybrid Nelder-Mead algorithm and dragonfly algorithm (INMDA), and hybridization of dragonfly algorithm and artificial bee colony (HDA) are applied to solve four industrial chemical process optimization problems. A fuzzy multi-criteria decision making tool in the form of fuzzy-measurement alternatives and ranking according to compromise solution (MARCOS) is adopted to ascertain the relative rankings of the DA variants with respect to computational time, Friedman’s rank based on optimal solutions and convergence rate. Based on the comprehensive testing of the algorithms, it is revealed that DADE, QGDA and classical DA are the top three DA variants in solving the industrial chemical process optimization problems under consideration.
Journal:Informatica
Volume 35, Issue 1 (2024), pp. 179–202
Abstract
The purpose of this manuscript is to develop a novel MAIRCA (Multi-Attribute Ideal-Real Comparative Analysis) method to solve the MCDM (Multiple Criteria Decision-Making) problems with completely unknown weights in the q-rung orthopair fuzzy (q-ROF) setting. Firstly, the new concepts of q-ROF Lance distance are defined and some related properties are discussed in this paper, from which we establish the maximizing deviation method (MDM) model for q-ROF numbers to determine the optimal criteria weight. Then, the Lance distance-based MAIRCA (MAIRCA-L) method is designed. In it, the preference, theoretical and real evaluation matrices are calculated considering the interaction relationship in q-ROF numbers, and the q-ROF Lance distance is applied to obtain the gap matrix. Finally, we manifest the effectiveness and advantage of the q-ROF MAIRCA-L method by two numerical examples.
Pub. online:5 Aug 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 16, Issue 1 (2005), pp. 107–120
Abstract
When handling engineering problems associated with optimal alternative selection a researcher often deals with not sufficiently accurate data. The alternatives are usually assessed by applying several different criteria. A method takes advantage of the relationship between fuzzy sets and matrix game theories can be offered for multicriteria decision-making. Practical investigations have already been discussed for selecting the variants water supply systems.
Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 1 (2019), pp. 135–152
Abstract
The aim of this paper is to make a proposal for a new extension of the MULTIMOORA method extended to deal with bipolar fuzzy sets. Bipolar fuzzy sets are proposed as an extension of classical fuzzy sets in order to enable solving a particular class of decision-making problems. Unlike other extensions of the fuzzy set of theory, bipolar fuzzy sets introduce a positive membership function, which denotes the satisfaction degree of the element x to the property corresponding to the bipolar-valued fuzzy set, and the negative membership function, which denotes the degree of the satisfaction of the element x to some implicit counter-property corresponding to the bipolar-valued fuzzy set. By using single-valued bipolar fuzzy numbers, the MULTIMOORA method can be more efficient for solving some specific problems whose solving requires assessment and prediction. The suitability of the proposed approach is presented through an example.
Journal:Informatica
Volume 26, Issue 2 (2015), pp. 335–355
Abstract
Abstract
This paper proposes an extension of the ARAS method which, due to the use of interval-valued fuzzy numbers, can be more appropriate for solving real-world problems. In order to overcome the complexity of real-world decision-making problems, the proposed extension also includes the use of linguistic variables and a group decision making approach. In order to highlight the proposed methodology an example of a faculty websites evaluation is considered.