Pub. online:5 Aug 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 16, Issue 1 (2005), pp. 131–144
Abstract
The aim of the given paper is the development of an approach for parametric identification of Wiener systems with piecewise linear nonlinearities, i.e., when the linear part with unknown parameters is followed by a saturation-like function with unknown slopes. It is shown here that by a simple data reordering and by a following data partition the problem of identification of a nonlinear Wiener system could be reduced to a linear parametric estimation problem. Afterwards, estimates of the unknown parameters of linear regression models are calculated by processing respective particles of input-output data. A technique based on ordinary least squares (LS) is proposed here for the estimation of parameters of linear and nonlinear parts of the Wiener system, including the unknown threshold of piecewise nonlinearity, too. The results of numerical simulation and identification obtained by processing observations of input-output signals of a discrete-time Wiener system with a piecewise nonlinearity by computer are given.
Journal:Informatica
Volume 21, Issue 4 (2010), pp. 575–596
Abstract
This paper presents GSM speech coder indirect identification algorithm based on sending novel identification pilot signals through the GSM speech channel. Each GSM subsystem disturbs identification pilot, while speech coder uniquely changes the tempo-spectral characteristics of the proposed pilot signal. Speech coder identification algorithm identifies speech coder with the usage of robust linear frequency cepstral coefficient (LFCC) feature extraction procedure and fast artificial neural networks. First step of speech coder identification algorithm is the exact position detection of the identification pilot signal using normalized cross correlation approach. Next stage is time-domain windowing of the input signal to convolve each frame of the input speech signal and window spectrum. Consecutive step is a short-time Fast Fourier Transformation to produce the magnitude spectrum of each windowed frame. Further, a noise reduction with spectral subtraction based on spectral smoothing is carried out. In last steps we perform the frequency filtering and Discrete Cosine Transformation to receive 24 uncorrelated cepstral coefficients per frame as a result. Speech coder identification is completed with fast artificial neural network classification using the input feature vector of 24 LFCC coefficients, giving a result of identified speech coder. For GSM speech coder indirect identification evaluation, the standardized GSM ETSI bit-exact implementations were used. Furthermore, a set of custom tools was build. These tools were used to simulate and control various conditions in the GSM system. Final results show that proposed algorithm identifies the GSM-EFR speech coder with the accuracy of 98.85%, the GSM-FR speech coder with 98.71%, and the GSM-HR coder with 98.61%. These scores were achieved at various types of surrounding noises and even at very low SNR conditions.
Journal:Informatica
Volume 17, Issue 2 (2006), pp. 199–206
Abstract
This paper presents an iterative autoregressive system parameter estimation algorithm in the presence of white observation noise. The algorithm is based on the parameter estimation bias correction approach. We use high order Yule–Walker equations, sequentially estimate the noise variance, and exploit these estimated variances for the bias correction. The improved performance of the proposed algorithm in the presence of white noise is demonstrated via Monte Carlo experiments.
Journal:Informatica
Volume 5, Issues 1-2 (1994), pp. 98–109
Abstract
The input–output relationship of the periodically time-varying (PTV) systems, impulse response of the PTV state–space system, and the transfer function of the PTV system are presented. A coefficient sensitivity is investigated by using a virtual PTV state-space system in which periodically time-varying coefficients are stochastically varied.
Journal:Informatica
Volume 3, Issue 1 (1992), pp. 98–118
Abstract
We consider a class of identification algorithms for distributed parameter systems. Utilizing stochastic optimization techniques, sequences of estimators are constructed by minimizing appropriate functionals. The main effort is to develop weak and strong invariance principles for the underlying algorithms. By means of weak convergence methods, a functional central limit theorem is established. Using the Skorohod imbedding, a strong invariance principle is obtained. These invariance principles provide very precise rates of convergence results for parameter estimates, yielding important information for experimental design.