Pub. online:5 Aug 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 16, Issue 1 (2005), pp. 131–144
Abstract
The aim of the given paper is the development of an approach for parametric identification of Wiener systems with piecewise linear nonlinearities, i.e., when the linear part with unknown parameters is followed by a saturation-like function with unknown slopes. It is shown here that by a simple data reordering and by a following data partition the problem of identification of a nonlinear Wiener system could be reduced to a linear parametric estimation problem. Afterwards, estimates of the unknown parameters of linear regression models are calculated by processing respective particles of input-output data. A technique based on ordinary least squares (LS) is proposed here for the estimation of parameters of linear and nonlinear parts of the Wiener system, including the unknown threshold of piecewise nonlinearity, too. The results of numerical simulation and identification obtained by processing observations of input-output signals of a discrete-time Wiener system with a piecewise nonlinearity by computer are given.
Journal:Informatica
Volume 22, Issue 2 (2011), pp. 165–176
Abstract
The instrumental variable (IV) method is one of the most renowned methods for parameter estimation. Its bigger advantage is that it is applicable for open-loop as well as for closed-loop systems. The main difficulty in closed-loop identification is due to the correlation between the disturbances and the control signal induced by the loop. In order to overcome this problem, additional excitation signal is introduced. Non-recursive modifications of the instrumental variable method for closed-loop system identification on the base of a generalized IV method have been developed (Atanasov and Ichtev, 2009; Gilson and Van den Hof, 2001; Gilson and Van den Hof, 2003). In this paper, recursive algorithms for theses modifications are proposed and investigated. A simulation is carried out in order to illustrate the obtained results.
Journal:Informatica
Volume 20, Issue 1 (2009), pp. 3–22
Abstract
In the previous papers (Pupeikis, 2000; Genov et al., 2006), a direct approach for estimating the parameters of a discrete-time linear time-invariant (LTI) dynamic system, acting in a closed-loop in the case of additive correlated noise with contaminating outliers uniformly spread in it, is presented. It is assumed here that the parameters of the LQG (Linear Quadratic Gaussian Control) controller are known beforehand. The aim of the given paper is development of a parametric identification approach for a closed-loop system when the parameters of an LTI system as well as that of LQG controller are not known and ought to be estimated. The recursive techniques based on an the M- and GM- estimator algorithms are applied here in the calculation of the system as well as noise filter parameters. Afterwards, the recursive parameter estimates are used in each current iteration to determine unknown parameters of the LQG-controller, too. The results of numerical simulation by computer are discussed.
Journal:Informatica
Volume 17, Issue 2 (2006), pp. 199–206
Abstract
This paper presents an iterative autoregressive system parameter estimation algorithm in the presence of white observation noise. The algorithm is based on the parameter estimation bias correction approach. We use high order Yule–Walker equations, sequentially estimate the noise variance, and exploit these estimated variances for the bias correction. The improved performance of the proposed algorithm in the presence of white noise is demonstrated via Monte Carlo experiments.
Journal:Informatica
Volume 17, Issue 1 (2006), pp. 55–68
Abstract
The aim of the given paper is the development of an approach for parametric identification of Hammerstein systems with piecewise linear nonlinearities, i.e., when the saturation-like function with unknown slopes is followed by a linear part with unknown parameters. It is shown here that by a simple input data rearrangement and by a following data partition the problem of identification of a nonlinear Hammerstein system could be reduced to the linear parametric estimation problem. Afterwards, estimates of the unknown parameters of linear regression models are calculated by processing respective particles of input-output data. A technique based on ordinary least squares is proposed here for the estimation of parameters of linear and nonlinear parts of the Hammerstein system, including the unknown threshold of the piecewise nonlinearity, too. The results of numerical simulation and identification obtained by processing observations of input-output signals of a discrete-time Hammerstein system with a piecewise nonlinearity with positive slopes by computer are given.